Metamath Proof Explorer


Theorem termcbasmo

Description: Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcbas.c No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
termcbas.b B = Base C
termcbasmo.x φ X B
termcbasmo.y φ Y B
Assertion termcbasmo φ X = Y

Proof

Step Hyp Ref Expression
1 termcbas.c Could not format ( ph -> C e. TermCat ) : No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
2 termcbas.b B = Base C
3 termcbasmo.x φ X B
4 termcbasmo.y φ Y B
5 eqeq1 x = X x = y X = y
6 eqeq2 y = Y X = y X = Y
7 1 2 termcbas φ z B = z
8 mosn B = z * x x B
9 8 exlimiv z B = z * x x B
10 7 9 syl φ * x x B
11 moel * x x B x B y B x = y
12 10 11 sylib φ x B y B x = y
13 5 6 12 3 4 rspc2dv φ X = Y