Metamath Proof Explorer


Theorem mosn

Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mosn A=B*xxA

Proof

Step Hyp Ref Expression
1 rmosn *xB
2 rmotru *xxB*xB
3 1 2 mpbir *xxB
4 eleq2 A=BxAxB
5 4 mobidv A=B*xxA*xxB
6 3 5 mpbiri A=B*xxA