| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcbas.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
| 2 |
|
termcbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
termcbasmo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 4 |
|
termcbasmo.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 5 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) |
| 6 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑌 ) ) |
| 7 |
1 2
|
termcbas |
⊢ ( 𝜑 → ∃ 𝑧 𝐵 = { 𝑧 } ) |
| 8 |
|
mosn |
⊢ ( 𝐵 = { 𝑧 } → ∃* 𝑥 𝑥 ∈ 𝐵 ) |
| 9 |
8
|
exlimiv |
⊢ ( ∃ 𝑧 𝐵 = { 𝑧 } → ∃* 𝑥 𝑥 ∈ 𝐵 ) |
| 10 |
7 9
|
syl |
⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ 𝐵 ) |
| 11 |
|
moel |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
| 12 |
10 11
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
| 13 |
5 6 12 3 4
|
rspc2dv |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |