Metamath Proof Explorer


Theorem termcbasmo

Description: Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcbas.c ( 𝜑𝐶 ∈ TermCat )
termcbas.b 𝐵 = ( Base ‘ 𝐶 )
termcbasmo.x ( 𝜑𝑋𝐵 )
termcbasmo.y ( 𝜑𝑌𝐵 )
Assertion termcbasmo ( 𝜑𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 termcbas.c ( 𝜑𝐶 ∈ TermCat )
2 termcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 termcbasmo.x ( 𝜑𝑋𝐵 )
4 termcbasmo.y ( 𝜑𝑌𝐵 )
5 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦𝑋 = 𝑦 ) )
6 eqeq2 ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦𝑋 = 𝑌 ) )
7 1 2 termcbas ( 𝜑 → ∃ 𝑧 𝐵 = { 𝑧 } )
8 mosn ( 𝐵 = { 𝑧 } → ∃* 𝑥 𝑥𝐵 )
9 8 exlimiv ( ∃ 𝑧 𝐵 = { 𝑧 } → ∃* 𝑥 𝑥𝐵 )
10 7 9 syl ( 𝜑 → ∃* 𝑥 𝑥𝐵 )
11 moel ( ∃* 𝑥 𝑥𝐵 ↔ ∀ 𝑥𝐵𝑦𝐵 𝑥 = 𝑦 )
12 10 11 sylib ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 𝑥 = 𝑦 )
13 5 6 12 3 4 rspc2dv ( 𝜑𝑋 = 𝑌 )