Metamath Proof Explorer


Theorem termchomn0

Description: All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses termcbas.c ( 𝜑𝐶 ∈ TermCat )
termcbas.b 𝐵 = ( Base ‘ 𝐶 )
termcbasmo.x ( 𝜑𝑋𝐵 )
termcbasmo.y ( 𝜑𝑌𝐵 )
termcid.h 𝐻 = ( Hom ‘ 𝐶 )
Assertion termchomn0 ( 𝜑 → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ )

Proof

Step Hyp Ref Expression
1 termcbas.c ( 𝜑𝐶 ∈ TermCat )
2 termcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 termcbasmo.x ( 𝜑𝑋𝐵 )
4 termcbasmo.y ( 𝜑𝑌𝐵 )
5 termcid.h 𝐻 = ( Hom ‘ 𝐶 )
6 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
7 1 termccd ( 𝜑𝐶 ∈ Cat )
8 2 5 6 7 3 catidcl ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) )
9 1 2 3 4 termcbasmo ( 𝜑𝑋 = 𝑌 )
10 9 oveq2d ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( 𝑋 𝐻 𝑌 ) )
11 8 10 eleqtrd ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑌 ) )
12 n0i ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑌 ) → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ )
13 11 12 syl ( 𝜑 → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ )