| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcbas.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
| 2 |
|
termcbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
termcbasmo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 4 |
|
termcbasmo.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 5 |
|
termcid.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 6 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 7 |
1
|
termccd |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 8 |
2 5 6 7 3
|
catidcl |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
| 9 |
1 2 3 4
|
termcbasmo |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 11 |
8 10
|
eleqtrd |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 12 |
|
n0i |
⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑌 ) → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ) |