Metamath Proof Explorer


Theorem termchomn0

Description: All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses termcbas.c No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
termcbas.b B = Base C
termcbasmo.x φ X B
termcbasmo.y φ Y B
termcid.h H = Hom C
Assertion termchomn0 φ ¬ X H Y =

Proof

Step Hyp Ref Expression
1 termcbas.c Could not format ( ph -> C e. TermCat ) : No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
2 termcbas.b B = Base C
3 termcbasmo.x φ X B
4 termcbasmo.y φ Y B
5 termcid.h H = Hom C
6 eqid Id C = Id C
7 1 termccd φ C Cat
8 2 5 6 7 3 catidcl φ Id C X X H X
9 1 2 3 4 termcbasmo φ X = Y
10 9 oveq2d φ X H X = X H Y
11 8 10 eleqtrd φ Id C X X H Y
12 n0i Id C X X H Y ¬ X H Y =
13 11 12 syl φ ¬ X H Y =