Metamath Proof Explorer


Theorem termchomn0

Description: All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses termcbas.c
|- ( ph -> C e. TermCat )
termcbas.b
|- B = ( Base ` C )
termcbasmo.x
|- ( ph -> X e. B )
termcbasmo.y
|- ( ph -> Y e. B )
termcid.h
|- H = ( Hom ` C )
Assertion termchomn0
|- ( ph -> -. ( X H Y ) = (/) )

Proof

Step Hyp Ref Expression
1 termcbas.c
 |-  ( ph -> C e. TermCat )
2 termcbas.b
 |-  B = ( Base ` C )
3 termcbasmo.x
 |-  ( ph -> X e. B )
4 termcbasmo.y
 |-  ( ph -> Y e. B )
5 termcid.h
 |-  H = ( Hom ` C )
6 eqid
 |-  ( Id ` C ) = ( Id ` C )
7 1 termccd
 |-  ( ph -> C e. Cat )
8 2 5 6 7 3 catidcl
 |-  ( ph -> ( ( Id ` C ) ` X ) e. ( X H X ) )
9 1 2 3 4 termcbasmo
 |-  ( ph -> X = Y )
10 9 oveq2d
 |-  ( ph -> ( X H X ) = ( X H Y ) )
11 8 10 eleqtrd
 |-  ( ph -> ( ( Id ` C ) ` X ) e. ( X H Y ) )
12 n0i
 |-  ( ( ( Id ` C ) ` X ) e. ( X H Y ) -> -. ( X H Y ) = (/) )
13 11 12 syl
 |-  ( ph -> -. ( X H Y ) = (/) )