| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcbas.c |
|- ( ph -> C e. TermCat ) |
| 2 |
|
termcbas.b |
|- B = ( Base ` C ) |
| 3 |
|
termcbasmo.x |
|- ( ph -> X e. B ) |
| 4 |
|
termcbasmo.y |
|- ( ph -> Y e. B ) |
| 5 |
|
termcid.h |
|- H = ( Hom ` C ) |
| 6 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 7 |
1
|
termccd |
|- ( ph -> C e. Cat ) |
| 8 |
2 5 6 7 3
|
catidcl |
|- ( ph -> ( ( Id ` C ) ` X ) e. ( X H X ) ) |
| 9 |
1 2 3 4
|
termcbasmo |
|- ( ph -> X = Y ) |
| 10 |
9
|
oveq2d |
|- ( ph -> ( X H X ) = ( X H Y ) ) |
| 11 |
8 10
|
eleqtrd |
|- ( ph -> ( ( Id ` C ) ` X ) e. ( X H Y ) ) |
| 12 |
|
n0i |
|- ( ( ( Id ` C ) ` X ) e. ( X H Y ) -> -. ( X H Y ) = (/) ) |
| 13 |
11 12
|
syl |
|- ( ph -> -. ( X H Y ) = (/) ) |