Description: All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| termcbas.b | |- B = ( Base ` C ) |
||
| termcbasmo.x | |- ( ph -> X e. B ) |
||
| termcbasmo.y | |- ( ph -> Y e. B ) |
||
| termcid.h | |- H = ( Hom ` C ) |
||
| termcid.f | |- ( ph -> F e. ( X H Y ) ) |
||
| termchommo.x | |- ( ph -> Z e. B ) |
||
| termchommo.y | |- ( ph -> W e. B ) |
||
| termchommo.f | |- ( ph -> G e. ( Z H W ) ) |
||
| Assertion | termchommo | |- ( ph -> F = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| 2 | termcbas.b | |- B = ( Base ` C ) |
|
| 3 | termcbasmo.x | |- ( ph -> X e. B ) |
|
| 4 | termcbasmo.y | |- ( ph -> Y e. B ) |
|
| 5 | termcid.h | |- H = ( Hom ` C ) |
|
| 6 | termcid.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 7 | termchommo.x | |- ( ph -> Z e. B ) |
|
| 8 | termchommo.y | |- ( ph -> W e. B ) |
|
| 9 | termchommo.f | |- ( ph -> G e. ( Z H W ) ) |
|
| 10 | 1 2 3 7 | termcbasmo | |- ( ph -> X = Z ) |
| 11 | 1 2 4 8 | termcbasmo | |- ( ph -> Y = W ) |
| 12 | 10 11 | oveq12d | |- ( ph -> ( X H Y ) = ( Z H W ) ) |
| 13 | 9 12 | eleqtrrd | |- ( ph -> G e. ( X H Y ) ) |
| 14 | 1 | termcthind | |- ( ph -> C e. ThinCat ) |
| 15 | 3 4 6 13 2 5 14 | thincmo2 | |- ( ph -> F = G ) |