Metamath Proof Explorer


Theorem termchommo

Description: All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcbas.c
|- ( ph -> C e. TermCat )
termcbas.b
|- B = ( Base ` C )
termcbasmo.x
|- ( ph -> X e. B )
termcbasmo.y
|- ( ph -> Y e. B )
termcid.h
|- H = ( Hom ` C )
termcid.f
|- ( ph -> F e. ( X H Y ) )
termchommo.x
|- ( ph -> Z e. B )
termchommo.y
|- ( ph -> W e. B )
termchommo.f
|- ( ph -> G e. ( Z H W ) )
Assertion termchommo
|- ( ph -> F = G )

Proof

Step Hyp Ref Expression
1 termcbas.c
 |-  ( ph -> C e. TermCat )
2 termcbas.b
 |-  B = ( Base ` C )
3 termcbasmo.x
 |-  ( ph -> X e. B )
4 termcbasmo.y
 |-  ( ph -> Y e. B )
5 termcid.h
 |-  H = ( Hom ` C )
6 termcid.f
 |-  ( ph -> F e. ( X H Y ) )
7 termchommo.x
 |-  ( ph -> Z e. B )
8 termchommo.y
 |-  ( ph -> W e. B )
9 termchommo.f
 |-  ( ph -> G e. ( Z H W ) )
10 1 2 3 7 termcbasmo
 |-  ( ph -> X = Z )
11 1 2 4 8 termcbasmo
 |-  ( ph -> Y = W )
12 10 11 oveq12d
 |-  ( ph -> ( X H Y ) = ( Z H W ) )
13 9 12 eleqtrrd
 |-  ( ph -> G e. ( X H Y ) )
14 1 termcthind
 |-  ( ph -> C e. ThinCat )
15 3 4 6 13 2 5 14 thincmo2
 |-  ( ph -> F = G )