Metamath Proof Explorer


Theorem termcid

Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcbas.c
|- ( ph -> C e. TermCat )
termcbas.b
|- B = ( Base ` C )
termcbasmo.x
|- ( ph -> X e. B )
termcbasmo.y
|- ( ph -> Y e. B )
termcid.h
|- H = ( Hom ` C )
termcid.f
|- ( ph -> F e. ( X H Y ) )
termcid.i
|- .1. = ( Id ` C )
Assertion termcid
|- ( ph -> F = ( .1. ` X ) )

Proof

Step Hyp Ref Expression
1 termcbas.c
 |-  ( ph -> C e. TermCat )
2 termcbas.b
 |-  B = ( Base ` C )
3 termcbasmo.x
 |-  ( ph -> X e. B )
4 termcbasmo.y
 |-  ( ph -> Y e. B )
5 termcid.h
 |-  H = ( Hom ` C )
6 termcid.f
 |-  ( ph -> F e. ( X H Y ) )
7 termcid.i
 |-  .1. = ( Id ` C )
8 1 termcthind
 |-  ( ph -> C e. ThinCat )
9 1 2 3 4 termcbasmo
 |-  ( ph -> X = Y )
10 9 oveq2d
 |-  ( ph -> ( X H X ) = ( X H Y ) )
11 6 10 eleqtrrd
 |-  ( ph -> F e. ( X H X ) )
12 8 2 5 3 7 11 thincid
 |-  ( ph -> F = ( .1. ` X ) )