Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| termcbas.b | |- B = ( Base ` C ) |
||
| termcbasmo.x | |- ( ph -> X e. B ) |
||
| termcbasmo.y | |- ( ph -> Y e. B ) |
||
| termcid.h | |- H = ( Hom ` C ) |
||
| termcid.f | |- ( ph -> F e. ( X H Y ) ) |
||
| termcid.i | |- .1. = ( Id ` C ) |
||
| Assertion | termcid | |- ( ph -> F = ( .1. ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| 2 | termcbas.b | |- B = ( Base ` C ) |
|
| 3 | termcbasmo.x | |- ( ph -> X e. B ) |
|
| 4 | termcbasmo.y | |- ( ph -> Y e. B ) |
|
| 5 | termcid.h | |- H = ( Hom ` C ) |
|
| 6 | termcid.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 7 | termcid.i | |- .1. = ( Id ` C ) |
|
| 8 | 1 | termcthind | |- ( ph -> C e. ThinCat ) |
| 9 | 1 2 3 4 | termcbasmo | |- ( ph -> X = Y ) |
| 10 | 9 | oveq2d | |- ( ph -> ( X H X ) = ( X H Y ) ) |
| 11 | 6 10 | eleqtrrd | |- ( ph -> F e. ( X H X ) ) |
| 12 | 8 2 5 3 7 11 | thincid | |- ( ph -> F = ( .1. ` X ) ) |