Metamath Proof Explorer


Theorem termcid2

Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcbas.c
|- ( ph -> C e. TermCat )
termcbas.b
|- B = ( Base ` C )
termcbasmo.x
|- ( ph -> X e. B )
termcbasmo.y
|- ( ph -> Y e. B )
termcid.h
|- H = ( Hom ` C )
termcid.f
|- ( ph -> F e. ( X H Y ) )
termcid.i
|- .1. = ( Id ` C )
Assertion termcid2
|- ( ph -> F = ( .1. ` Y ) )

Proof

Step Hyp Ref Expression
1 termcbas.c
 |-  ( ph -> C e. TermCat )
2 termcbas.b
 |-  B = ( Base ` C )
3 termcbasmo.x
 |-  ( ph -> X e. B )
4 termcbasmo.y
 |-  ( ph -> Y e. B )
5 termcid.h
 |-  H = ( Hom ` C )
6 termcid.f
 |-  ( ph -> F e. ( X H Y ) )
7 termcid.i
 |-  .1. = ( Id ` C )
8 1 2 3 4 5 6 7 termcid
 |-  ( ph -> F = ( .1. ` X ) )
9 1 2 3 4 termcbasmo
 |-  ( ph -> X = Y )
10 9 fveq2d
 |-  ( ph -> ( .1. ` X ) = ( .1. ` Y ) )
11 8 10 eqtrd
 |-  ( ph -> F = ( .1. ` Y ) )