Metamath Proof Explorer


Theorem termcid2

Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcbas.c No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
termcbas.b B = Base C
termcbasmo.x φ X B
termcbasmo.y φ Y B
termcid.h H = Hom C
termcid.f φ F X H Y
termcid.i 1 ˙ = Id C
Assertion termcid2 φ F = 1 ˙ Y

Proof

Step Hyp Ref Expression
1 termcbas.c Could not format ( ph -> C e. TermCat ) : No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
2 termcbas.b B = Base C
3 termcbasmo.x φ X B
4 termcbasmo.y φ Y B
5 termcid.h H = Hom C
6 termcid.f φ F X H Y
7 termcid.i 1 ˙ = Id C
8 1 2 3 4 5 6 7 termcid φ F = 1 ˙ X
9 1 2 3 4 termcbasmo φ X = Y
10 9 fveq2d φ 1 ˙ X = 1 ˙ Y
11 8 10 eqtrd φ F = 1 ˙ Y