Metamath Proof Explorer


Theorem termchom

Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses termchom.c No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
termchom.b B = Base C
termchom.x φ X B
termchom.y φ Y B
termchom.h H = Hom C
termchom.i 1 ˙ = Id C
Assertion termchom φ X H Y = 1 ˙ X

Proof

Step Hyp Ref Expression
1 termchom.c Could not format ( ph -> C e. TermCat ) : No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
2 termchom.b B = Base C
3 termchom.x φ X B
4 termchom.y φ Y B
5 termchom.h H = Hom C
6 termchom.i 1 ˙ = Id C
7 1 2 3 4 5 termchomn0 φ ¬ X H Y =
8 neq0 ¬ X H Y = f f X H Y
9 7 8 sylib φ f f X H Y
10 3 adantr φ f X H Y X B
11 4 adantr φ f X H Y Y B
12 simpr φ f X H Y f X H Y
13 1 adantr Could not format ( ( ph /\ f e. ( X H Y ) ) -> C e. TermCat ) : No typesetting found for |- ( ( ph /\ f e. ( X H Y ) ) -> C e. TermCat ) with typecode |-
14 13 termcthind φ f X H Y C ThinCat
15 10 11 12 2 5 14 thinchom φ f X H Y X H Y = f
16 13 2 10 11 5 12 6 termcid φ f X H Y f = 1 ˙ X
17 16 sneqd φ f X H Y f = 1 ˙ X
18 15 17 eqtrd φ f X H Y X H Y = 1 ˙ X
19 9 18 exlimddv φ X H Y = 1 ˙ X