Metamath Proof Explorer


Theorem termchom2

Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses termchom.c No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
termchom.b B = Base C
termchom.x φ X B
termchom.y φ Y B
termchom.h H = Hom C
termchom.i 1 ˙ = Id C
termchom2.z φ Z B
Assertion termchom2 φ X H Y = 1 ˙ Z

Proof

Step Hyp Ref Expression
1 termchom.c Could not format ( ph -> C e. TermCat ) : No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
2 termchom.b B = Base C
3 termchom.x φ X B
4 termchom.y φ Y B
5 termchom.h H = Hom C
6 termchom.i 1 ˙ = Id C
7 termchom2.z φ Z B
8 1 2 3 4 5 6 termchom φ X H Y = 1 ˙ X
9 1 2 3 7 termcbasmo φ X = Z
10 9 fveq2d φ 1 ˙ X = 1 ˙ Z
11 10 sneqd φ 1 ˙ X = 1 ˙ Z
12 8 11 eqtrd φ X H Y = 1 ˙ Z