Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termchom.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| termchom.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| termchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| termchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| termchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| termchom.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| termchom2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | termchom2 | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { ( 1 ‘ 𝑍 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termchom.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| 2 | termchom.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | termchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | termchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | termchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 6 | termchom.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 7 | termchom2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | 1 2 3 4 5 6 | termchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { ( 1 ‘ 𝑋 ) } ) |
| 9 | 1 2 3 7 | termcbasmo | ⊢ ( 𝜑 → 𝑋 = 𝑍 ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( 1 ‘ 𝑍 ) ) |
| 11 | 10 | sneqd | ⊢ ( 𝜑 → { ( 1 ‘ 𝑋 ) } = { ( 1 ‘ 𝑍 ) } ) |
| 12 | 8 11 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { ( 1 ‘ 𝑍 ) } ) |