Metamath Proof Explorer


Theorem termchom2

Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses termchom.c ( 𝜑𝐶 ∈ TermCat )
termchom.b 𝐵 = ( Base ‘ 𝐶 )
termchom.x ( 𝜑𝑋𝐵 )
termchom.y ( 𝜑𝑌𝐵 )
termchom.h 𝐻 = ( Hom ‘ 𝐶 )
termchom.i 1 = ( Id ‘ 𝐶 )
termchom2.z ( 𝜑𝑍𝐵 )
Assertion termchom2 ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { ( 1𝑍 ) } )

Proof

Step Hyp Ref Expression
1 termchom.c ( 𝜑𝐶 ∈ TermCat )
2 termchom.b 𝐵 = ( Base ‘ 𝐶 )
3 termchom.x ( 𝜑𝑋𝐵 )
4 termchom.y ( 𝜑𝑌𝐵 )
5 termchom.h 𝐻 = ( Hom ‘ 𝐶 )
6 termchom.i 1 = ( Id ‘ 𝐶 )
7 termchom2.z ( 𝜑𝑍𝐵 )
8 1 2 3 4 5 6 termchom ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { ( 1𝑋 ) } )
9 1 2 3 7 termcbasmo ( 𝜑𝑋 = 𝑍 )
10 9 fveq2d ( 𝜑 → ( 1𝑋 ) = ( 1𝑍 ) )
11 10 sneqd ( 𝜑 → { ( 1𝑋 ) } = { ( 1𝑍 ) } )
12 8 11 eqtrd ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { ( 1𝑍 ) } )