Metamath Proof Explorer


Theorem termchom2

Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses termchom.c
|- ( ph -> C e. TermCat )
termchom.b
|- B = ( Base ` C )
termchom.x
|- ( ph -> X e. B )
termchom.y
|- ( ph -> Y e. B )
termchom.h
|- H = ( Hom ` C )
termchom.i
|- .1. = ( Id ` C )
termchom2.z
|- ( ph -> Z e. B )
Assertion termchom2
|- ( ph -> ( X H Y ) = { ( .1. ` Z ) } )

Proof

Step Hyp Ref Expression
1 termchom.c
 |-  ( ph -> C e. TermCat )
2 termchom.b
 |-  B = ( Base ` C )
3 termchom.x
 |-  ( ph -> X e. B )
4 termchom.y
 |-  ( ph -> Y e. B )
5 termchom.h
 |-  H = ( Hom ` C )
6 termchom.i
 |-  .1. = ( Id ` C )
7 termchom2.z
 |-  ( ph -> Z e. B )
8 1 2 3 4 5 6 termchom
 |-  ( ph -> ( X H Y ) = { ( .1. ` X ) } )
9 1 2 3 7 termcbasmo
 |-  ( ph -> X = Z )
10 9 fveq2d
 |-  ( ph -> ( .1. ` X ) = ( .1. ` Z ) )
11 10 sneqd
 |-  ( ph -> { ( .1. ` X ) } = { ( .1. ` Z ) } )
12 8 11 eqtrd
 |-  ( ph -> ( X H Y ) = { ( .1. ` Z ) } )