Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termchom.c | |- ( ph -> C e. TermCat ) |
|
| termchom.b | |- B = ( Base ` C ) |
||
| termchom.x | |- ( ph -> X e. B ) |
||
| termchom.y | |- ( ph -> Y e. B ) |
||
| termchom.h | |- H = ( Hom ` C ) |
||
| termchom.i | |- .1. = ( Id ` C ) |
||
| termchom2.z | |- ( ph -> Z e. B ) |
||
| Assertion | termchom2 | |- ( ph -> ( X H Y ) = { ( .1. ` Z ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termchom.c | |- ( ph -> C e. TermCat ) |
|
| 2 | termchom.b | |- B = ( Base ` C ) |
|
| 3 | termchom.x | |- ( ph -> X e. B ) |
|
| 4 | termchom.y | |- ( ph -> Y e. B ) |
|
| 5 | termchom.h | |- H = ( Hom ` C ) |
|
| 6 | termchom.i | |- .1. = ( Id ` C ) |
|
| 7 | termchom2.z | |- ( ph -> Z e. B ) |
|
| 8 | 1 2 3 4 5 6 | termchom | |- ( ph -> ( X H Y ) = { ( .1. ` X ) } ) |
| 9 | 1 2 3 7 | termcbasmo | |- ( ph -> X = Z ) |
| 10 | 9 | fveq2d | |- ( ph -> ( .1. ` X ) = ( .1. ` Z ) ) |
| 11 | 10 | sneqd | |- ( ph -> { ( .1. ` X ) } = { ( .1. ` Z ) } ) |
| 12 | 8 11 | eqtrd | |- ( ph -> ( X H Y ) = { ( .1. ` Z ) } ) |