Metamath Proof Explorer
Description: The morphism of a terminal category is an identity morphism.
(Contributed by Zhi Wang, 16-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
termcbas.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
|
|
termcbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
|
|
termcbasmo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
termcbasmo.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
termcid.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
|
|
termcid.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
|
|
termcid.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
|
Assertion |
termcid |
⊢ ( 𝜑 → 𝐹 = ( 1 ‘ 𝑋 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcbas.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
| 2 |
|
termcbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
termcbasmo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 4 |
|
termcbasmo.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 5 |
|
termcid.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 6 |
|
termcid.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 7 |
|
termcid.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 8 |
1
|
termcthind |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| 9 |
1 2 3 4
|
termcbasmo |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 11 |
6 10
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑋 ) ) |
| 12 |
8 2 5 3 7 11
|
thincid |
⊢ ( 𝜑 → 𝐹 = ( 1 ‘ 𝑋 ) ) |