Metamath Proof Explorer


Theorem termcid

Description: The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcbas.c ( 𝜑𝐶 ∈ TermCat )
termcbas.b 𝐵 = ( Base ‘ 𝐶 )
termcbasmo.x ( 𝜑𝑋𝐵 )
termcbasmo.y ( 𝜑𝑌𝐵 )
termcid.h 𝐻 = ( Hom ‘ 𝐶 )
termcid.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
termcid.i 1 = ( Id ‘ 𝐶 )
Assertion termcid ( 𝜑𝐹 = ( 1𝑋 ) )

Proof

Step Hyp Ref Expression
1 termcbas.c ( 𝜑𝐶 ∈ TermCat )
2 termcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 termcbasmo.x ( 𝜑𝑋𝐵 )
4 termcbasmo.y ( 𝜑𝑌𝐵 )
5 termcid.h 𝐻 = ( Hom ‘ 𝐶 )
6 termcid.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
7 termcid.i 1 = ( Id ‘ 𝐶 )
8 1 termcthind ( 𝜑𝐶 ∈ ThinCat )
9 1 2 3 4 termcbasmo ( 𝜑𝑋 = 𝑌 )
10 9 oveq2d ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( 𝑋 𝐻 𝑌 ) )
11 6 10 eleqtrrd ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑋 ) )
12 8 2 5 3 7 11 thincid ( 𝜑𝐹 = ( 1𝑋 ) )