Metamath Proof Explorer


Theorem termchommo

Description: All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcbas.c ( 𝜑𝐶 ∈ TermCat )
termcbas.b 𝐵 = ( Base ‘ 𝐶 )
termcbasmo.x ( 𝜑𝑋𝐵 )
termcbasmo.y ( 𝜑𝑌𝐵 )
termcid.h 𝐻 = ( Hom ‘ 𝐶 )
termcid.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
termchommo.x ( 𝜑𝑍𝐵 )
termchommo.y ( 𝜑𝑊𝐵 )
termchommo.f ( 𝜑𝐺 ∈ ( 𝑍 𝐻 𝑊 ) )
Assertion termchommo ( 𝜑𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 termcbas.c ( 𝜑𝐶 ∈ TermCat )
2 termcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 termcbasmo.x ( 𝜑𝑋𝐵 )
4 termcbasmo.y ( 𝜑𝑌𝐵 )
5 termcid.h 𝐻 = ( Hom ‘ 𝐶 )
6 termcid.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
7 termchommo.x ( 𝜑𝑍𝐵 )
8 termchommo.y ( 𝜑𝑊𝐵 )
9 termchommo.f ( 𝜑𝐺 ∈ ( 𝑍 𝐻 𝑊 ) )
10 1 2 3 7 termcbasmo ( 𝜑𝑋 = 𝑍 )
11 1 2 4 8 termcbasmo ( 𝜑𝑌 = 𝑊 )
12 10 11 oveq12d ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑍 𝐻 𝑊 ) )
13 9 12 eleqtrrd ( 𝜑𝐺 ∈ ( 𝑋 𝐻 𝑌 ) )
14 1 termcthind ( 𝜑𝐶 ∈ ThinCat )
15 3 4 6 13 2 5 14 thincmo2 ( 𝜑𝐹 = 𝐺 )