Metamath Proof Explorer
Description: All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
termcbas.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
|
|
termcbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
|
|
termcbasmo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
termcbasmo.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
termcid.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
|
|
termcid.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
|
|
termchommo.x |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
|
|
termchommo.y |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
|
|
termchommo.f |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑍 𝐻 𝑊 ) ) |
|
Assertion |
termchommo |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcbas.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
| 2 |
|
termcbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
termcbasmo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 4 |
|
termcbasmo.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 5 |
|
termcid.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 6 |
|
termcid.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 7 |
|
termchommo.x |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 8 |
|
termchommo.y |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
| 9 |
|
termchommo.f |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑍 𝐻 𝑊 ) ) |
| 10 |
1 2 3 7
|
termcbasmo |
⊢ ( 𝜑 → 𝑋 = 𝑍 ) |
| 11 |
1 2 4 8
|
termcbasmo |
⊢ ( 𝜑 → 𝑌 = 𝑊 ) |
| 12 |
10 11
|
oveq12d |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑍 𝐻 𝑊 ) ) |
| 13 |
9 12
|
eleqtrrd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 14 |
1
|
termcthind |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| 15 |
3 4 6 13 2 5 14
|
thincmo2 |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |