Metamath Proof Explorer


Theorem moel

Description: "At most one" element in a set. (Contributed by Thierry Arnoux, 26-Jul-2018) Avoid ax-11 . (Revised by Wolf Lammen, 23-Nov-2024)

Ref Expression
Assertion moel ( ∃* 𝑥 𝑥𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 19.21v ( ∀ 𝑦 ( 𝑥𝐴 → ( 𝑦𝐴𝑥 = 𝑦 ) ) ↔ ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐴𝑥 = 𝑦 ) ) )
2 impexp ( ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥𝐴 → ( 𝑦𝐴𝑥 = 𝑦 ) ) )
3 2 albii ( ∀ 𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( 𝑥𝐴 → ( 𝑦𝐴𝑥 = 𝑦 ) ) )
4 df-ral ( ∀ 𝑦𝐴 𝑥 = 𝑦 ↔ ∀ 𝑦 ( 𝑦𝐴𝑥 = 𝑦 ) )
5 4 imbi2i ( ( 𝑥𝐴 → ∀ 𝑦𝐴 𝑥 = 𝑦 ) ↔ ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐴𝑥 = 𝑦 ) ) )
6 1 3 5 3bitr4i ( ∀ 𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥𝐴 → ∀ 𝑦𝐴 𝑥 = 𝑦 ) )
7 6 albii ( ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦𝐴 𝑥 = 𝑦 ) )
8 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
9 8 mo4 ( ∃* 𝑥 𝑥𝐴 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) )
10 df-ral ( ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦𝐴 𝑥 = 𝑦 ) )
11 7 9 10 3bitr4i ( ∃* 𝑥 𝑥𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 )