Metamath Proof Explorer


Theorem moel

Description: "At most one" element in a set. (Contributed by Thierry Arnoux, 26-Jul-2018) Avoid ax-11 . (Revised by Wolf Lammen, 23-Nov-2024)

Ref Expression
Assertion moel *xxAxAyAx=y

Proof

Step Hyp Ref Expression
1 eleq1w x=yxAyA
2 1 mo4 *xxAxyxAyAx=y
3 r2al xAyAx=yxyxAyAx=y
4 2 3 bitr4i *xxAxAyAx=y