Metamath Proof Explorer


Theorem termco

Description: The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses termcbas.c
|- ( ph -> C e. TermCat )
termcbas.b
|- B = ( Base ` C )
Assertion termco
|- ( ph -> U. B e. B )

Proof

Step Hyp Ref Expression
1 termcbas.c
 |-  ( ph -> C e. TermCat )
2 termcbas.b
 |-  B = ( Base ` C )
3 1 2 termcbas
 |-  ( ph -> E. x B = { x } )
4 unieq
 |-  ( B = { x } -> U. B = U. { x } )
5 unisnv
 |-  U. { x } = x
6 4 5 eqtrdi
 |-  ( B = { x } -> U. B = x )
7 vsnid
 |-  x e. { x }
8 6 7 eqeltrdi
 |-  ( B = { x } -> U. B e. { x } )
9 id
 |-  ( B = { x } -> B = { x } )
10 8 9 eleqtrrd
 |-  ( B = { x } -> U. B e. B )
11 10 exlimiv
 |-  ( E. x B = { x } -> U. B e. B )
12 3 11 syl
 |-  ( ph -> U. B e. B )