Description: The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| termcbas.b | |- B = ( Base ` C ) |
||
| Assertion | termco | |- ( ph -> U. B e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| 2 | termcbas.b | |- B = ( Base ` C ) |
|
| 3 | 1 2 | termcbas | |- ( ph -> E. x B = { x } ) |
| 4 | unieq | |- ( B = { x } -> U. B = U. { x } ) |
|
| 5 | unisnv | |- U. { x } = x |
|
| 6 | 4 5 | eqtrdi | |- ( B = { x } -> U. B = x ) |
| 7 | vsnid | |- x e. { x } |
|
| 8 | 6 7 | eqeltrdi | |- ( B = { x } -> U. B e. { x } ) |
| 9 | id | |- ( B = { x } -> B = { x } ) |
|
| 10 | 8 9 | eleqtrrd | |- ( B = { x } -> U. B e. B ) |
| 11 | 10 | exlimiv | |- ( E. x B = { x } -> U. B e. B ) |
| 12 | 3 11 | syl | |- ( ph -> U. B e. B ) |