Metamath Proof Explorer


Theorem termco

Description: The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses termcbas.c No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
termcbas.b B = Base C
Assertion termco φ B B

Proof

Step Hyp Ref Expression
1 termcbas.c Could not format ( ph -> C e. TermCat ) : No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
2 termcbas.b B = Base C
3 1 2 termcbas φ x B = x
4 unieq B = x B = x
5 unisnv x = x
6 4 5 eqtrdi B = x B = x
7 vsnid x x
8 6 7 eqeltrdi B = x B x
9 id B = x B = x
10 8 9 eleqtrrd B = x B B
11 10 exlimiv x B = x B B
12 3 11 syl φ B B