| Step |
Hyp |
Ref |
Expression |
| 1 |
|
discthin.k |
|- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
| 2 |
|
discthin.c |
|- C = ( ProsetToCat ` K ) |
| 3 |
|
discsntermlem |
|- ( E. x B = { x } -> B e. { b | E. x b = { x } } ) |
| 4 |
1 2
|
discthin |
|- ( B e. { b | E. x b = { x } } -> C e. ThinCat ) |
| 5 |
3 4
|
syl |
|- ( E. x B = { x } -> C e. ThinCat ) |
| 6 |
|
elex |
|- ( B e. { b | E. x b = { x } } -> B e. _V ) |
| 7 |
1 2
|
discbas |
|- ( B e. _V -> B = ( Base ` C ) ) |
| 8 |
7
|
eqeq1d |
|- ( B e. _V -> ( B = { x } <-> ( Base ` C ) = { x } ) ) |
| 9 |
8
|
exbidv |
|- ( B e. _V -> ( E. x B = { x } <-> E. x ( Base ` C ) = { x } ) ) |
| 10 |
3 6 9
|
3syl |
|- ( E. x B = { x } -> ( E. x B = { x } <-> E. x ( Base ` C ) = { x } ) ) |
| 11 |
10
|
ibi |
|- ( E. x B = { x } -> E. x ( Base ` C ) = { x } ) |
| 12 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 13 |
12
|
istermc |
|- ( C e. TermCat <-> ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) ) |
| 14 |
5 11 13
|
sylanbrc |
|- ( E. x B = { x } -> C e. TermCat ) |