Metamath Proof Explorer


Theorem discsnterm

Description: A discrete category (a category whose only morphisms are the identity morphisms) with a singlegon base is terminal. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses discthin.k
|- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. }
discthin.c
|- C = ( ProsetToCat ` K )
Assertion discsnterm
|- ( E. x B = { x } -> C e. TermCat )

Proof

Step Hyp Ref Expression
1 discthin.k
 |-  K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. }
2 discthin.c
 |-  C = ( ProsetToCat ` K )
3 discsntermlem
 |-  ( E. x B = { x } -> B e. { b | E. x b = { x } } )
4 1 2 discthin
 |-  ( B e. { b | E. x b = { x } } -> C e. ThinCat )
5 3 4 syl
 |-  ( E. x B = { x } -> C e. ThinCat )
6 elex
 |-  ( B e. { b | E. x b = { x } } -> B e. _V )
7 1 2 discbas
 |-  ( B e. _V -> B = ( Base ` C ) )
8 7 eqeq1d
 |-  ( B e. _V -> ( B = { x } <-> ( Base ` C ) = { x } ) )
9 8 exbidv
 |-  ( B e. _V -> ( E. x B = { x } <-> E. x ( Base ` C ) = { x } ) )
10 3 6 9 3syl
 |-  ( E. x B = { x } -> ( E. x B = { x } <-> E. x ( Base ` C ) = { x } ) )
11 10 ibi
 |-  ( E. x B = { x } -> E. x ( Base ` C ) = { x } )
12 eqid
 |-  ( Base ` C ) = ( Base ` C )
13 12 istermc
 |-  ( C e. TermCat <-> ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) )
14 5 11 13 sylanbrc
 |-  ( E. x B = { x } -> C e. TermCat )