| Step |
Hyp |
Ref |
Expression |
| 1 |
|
discthin.k |
⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } |
| 2 |
|
discthin.c |
⊢ 𝐶 = ( ProsetToCat ‘ 𝐾 ) |
| 3 |
|
discsntermlem |
⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ) |
| 4 |
1 2
|
discthin |
⊢ ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → 𝐶 ∈ ThinCat ) |
| 5 |
3 4
|
syl |
⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐶 ∈ ThinCat ) |
| 6 |
|
elex |
⊢ ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → 𝐵 ∈ V ) |
| 7 |
1 2
|
discbas |
⊢ ( 𝐵 ∈ V → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝐵 ∈ V → ( 𝐵 = { 𝑥 } ↔ ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 9 |
8
|
exbidv |
⊢ ( 𝐵 ∈ V → ( ∃ 𝑥 𝐵 = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 10 |
3 6 9
|
3syl |
⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → ( ∃ 𝑥 𝐵 = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 11 |
10
|
ibi |
⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 13 |
12
|
istermc |
⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 14 |
5 11 13
|
sylanbrc |
⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐶 ∈ TermCat ) |