Metamath Proof Explorer


Theorem discsnterm

Description: A discrete category (a category whose only morphisms are the identity morphisms) with a singlegon base is terminal. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses discthin.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ }
discthin.c 𝐶 = ( ProsetToCat ‘ 𝐾 )
Assertion discsnterm ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐶 ∈ TermCat )

Proof

Step Hyp Ref Expression
1 discthin.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ }
2 discthin.c 𝐶 = ( ProsetToCat ‘ 𝐾 )
3 discsntermlem ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } )
4 1 2 discthin ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → 𝐶 ∈ ThinCat )
5 3 4 syl ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐶 ∈ ThinCat )
6 elex ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → 𝐵 ∈ V )
7 1 2 discbas ( 𝐵 ∈ V → 𝐵 = ( Base ‘ 𝐶 ) )
8 7 eqeq1d ( 𝐵 ∈ V → ( 𝐵 = { 𝑥 } ↔ ( Base ‘ 𝐶 ) = { 𝑥 } ) )
9 8 exbidv ( 𝐵 ∈ V → ( ∃ 𝑥 𝐵 = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) )
10 3 6 9 3syl ( ∃ 𝑥 𝐵 = { 𝑥 } → ( ∃ 𝑥 𝐵 = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) )
11 10 ibi ( ∃ 𝑥 𝐵 = { 𝑥 } → ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } )
12 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
13 12 istermc ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) )
14 5 11 13 sylanbrc ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐶 ∈ TermCat )