| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfis2d.1 |  |-  ( ph -> ( x = y -> ( ps <-> ch ) ) ) | 
						
							| 2 |  | tfis2d.2 |  |-  ( ph -> ( x e. On -> ( A. y e. x ch -> ps ) ) ) | 
						
							| 3 | 1 | com12 |  |-  ( x = y -> ( ph -> ( ps <-> ch ) ) ) | 
						
							| 4 | 3 | pm5.74d |  |-  ( x = y -> ( ( ph -> ps ) <-> ( ph -> ch ) ) ) | 
						
							| 5 |  | r19.21v |  |-  ( A. y e. x ( ph -> ch ) <-> ( ph -> A. y e. x ch ) ) | 
						
							| 6 | 2 | com12 |  |-  ( x e. On -> ( ph -> ( A. y e. x ch -> ps ) ) ) | 
						
							| 7 | 6 | a2d |  |-  ( x e. On -> ( ( ph -> A. y e. x ch ) -> ( ph -> ps ) ) ) | 
						
							| 8 | 5 7 | biimtrid |  |-  ( x e. On -> ( A. y e. x ( ph -> ch ) -> ( ph -> ps ) ) ) | 
						
							| 9 | 4 8 | tfis2 |  |-  ( x e. On -> ( ph -> ps ) ) | 
						
							| 10 | 9 | com12 |  |-  ( ph -> ( x e. On -> ps ) ) |