Step |
Hyp |
Ref |
Expression |
1 |
|
tfis2d.1 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) |
2 |
|
tfis2d.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜓 ) ) ) |
3 |
1
|
com12 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ) |
4 |
3
|
pm5.74d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
5 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝜑 → 𝜒 ) ↔ ( 𝜑 → ∀ 𝑦 ∈ 𝑥 𝜒 ) ) |
6 |
2
|
com12 |
⊢ ( 𝑥 ∈ On → ( 𝜑 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜓 ) ) ) |
7 |
6
|
a2d |
⊢ ( 𝑥 ∈ On → ( ( 𝜑 → ∀ 𝑦 ∈ 𝑥 𝜒 ) → ( 𝜑 → 𝜓 ) ) ) |
8 |
5 7
|
syl5bi |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( 𝜑 → 𝜒 ) → ( 𝜑 → 𝜓 ) ) ) |
9 |
4 8
|
tfis2 |
⊢ ( 𝑥 ∈ On → ( 𝜑 → 𝜓 ) ) |
10 |
9
|
com12 |
⊢ ( 𝜑 → ( 𝑥 ∈ On → 𝜓 ) ) |