Metamath Proof Explorer


Theorem tfis2d

Description: Transfinite Induction Schema, using implicit substitution. (Contributed by Emmett Weisz, 3-May-2020)

Ref Expression
Hypotheses tfis2d.1 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
tfis2d.2 ( 𝜑 → ( 𝑥 ∈ On → ( ∀ 𝑦𝑥 𝜒𝜓 ) ) )
Assertion tfis2d ( 𝜑 → ( 𝑥 ∈ On → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 tfis2d.1 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
2 tfis2d.2 ( 𝜑 → ( 𝑥 ∈ On → ( ∀ 𝑦𝑥 𝜒𝜓 ) ) )
3 1 com12 ( 𝑥 = 𝑦 → ( 𝜑 → ( 𝜓𝜒 ) ) )
4 3 pm5.74d ( 𝑥 = 𝑦 → ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) )
5 r19.21v ( ∀ 𝑦𝑥 ( 𝜑𝜒 ) ↔ ( 𝜑 → ∀ 𝑦𝑥 𝜒 ) )
6 2 com12 ( 𝑥 ∈ On → ( 𝜑 → ( ∀ 𝑦𝑥 𝜒𝜓 ) ) )
7 6 a2d ( 𝑥 ∈ On → ( ( 𝜑 → ∀ 𝑦𝑥 𝜒 ) → ( 𝜑𝜓 ) ) )
8 5 7 syl5bi ( 𝑥 ∈ On → ( ∀ 𝑦𝑥 ( 𝜑𝜒 ) → ( 𝜑𝜓 ) ) )
9 4 8 tfis2 ( 𝑥 ∈ On → ( 𝜑𝜓 ) )
10 9 com12 ( 𝜑 → ( 𝑥 ∈ On → 𝜓 ) )