| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfis2d.1 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 2 |
|
tfis2d.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜓 ) ) ) |
| 3 |
1
|
com12 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 4 |
3
|
pm5.74d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
| 5 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝜑 → 𝜒 ) ↔ ( 𝜑 → ∀ 𝑦 ∈ 𝑥 𝜒 ) ) |
| 6 |
2
|
com12 |
⊢ ( 𝑥 ∈ On → ( 𝜑 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜓 ) ) ) |
| 7 |
6
|
a2d |
⊢ ( 𝑥 ∈ On → ( ( 𝜑 → ∀ 𝑦 ∈ 𝑥 𝜒 ) → ( 𝜑 → 𝜓 ) ) ) |
| 8 |
5 7
|
biimtrid |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( 𝜑 → 𝜒 ) → ( 𝜑 → 𝜓 ) ) ) |
| 9 |
4 8
|
tfis2 |
⊢ ( 𝑥 ∈ On → ( 𝜑 → 𝜓 ) ) |
| 10 |
9
|
com12 |
⊢ ( 𝜑 → ( 𝑥 ∈ On → 𝜓 ) ) |