| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfis2d.1 | ⊢ ( 𝜑  →  ( 𝑥  =  𝑦  →  ( 𝜓  ↔  𝜒 ) ) ) | 
						
							| 2 |  | tfis2d.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  On  →  ( ∀ 𝑦  ∈  𝑥 𝜒  →  𝜓 ) ) ) | 
						
							| 3 | 1 | com12 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) ) | 
						
							| 4 | 3 | pm5.74d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  →  𝜓 )  ↔  ( 𝜑  →  𝜒 ) ) ) | 
						
							| 5 |  | r19.21v | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝜑  →  𝜒 )  ↔  ( 𝜑  →  ∀ 𝑦  ∈  𝑥 𝜒 ) ) | 
						
							| 6 | 2 | com12 | ⊢ ( 𝑥  ∈  On  →  ( 𝜑  →  ( ∀ 𝑦  ∈  𝑥 𝜒  →  𝜓 ) ) ) | 
						
							| 7 | 6 | a2d | ⊢ ( 𝑥  ∈  On  →  ( ( 𝜑  →  ∀ 𝑦  ∈  𝑥 𝜒 )  →  ( 𝜑  →  𝜓 ) ) ) | 
						
							| 8 | 5 7 | biimtrid | ⊢ ( 𝑥  ∈  On  →  ( ∀ 𝑦  ∈  𝑥 ( 𝜑  →  𝜒 )  →  ( 𝜑  →  𝜓 ) ) ) | 
						
							| 9 | 4 8 | tfis2 | ⊢ ( 𝑥  ∈  On  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 10 | 9 | com12 | ⊢ ( 𝜑  →  ( 𝑥  ∈  On  →  𝜓 ) ) |