| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bnd2d.1 | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 2 |  | bnd2d.2 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜓 ) | 
						
							| 3 |  | raleq | ⊢ ( 𝐴  =  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ )  →  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜓  ↔  ∀ 𝑥  ∈  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ ) ∃ 𝑦  ∈  𝐵 𝜓 ) ) | 
						
							| 4 |  | raleq | ⊢ ( 𝐴  =  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ )  →  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝑧 𝜓  ↔  ∀ 𝑥  ∈  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ ) ∃ 𝑦  ∈  𝑧 𝜓 ) ) | 
						
							| 5 | 4 | anbi2d | ⊢ ( 𝐴  =  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ )  →  ( ( 𝑧  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝑧 𝜓 )  ↔  ( 𝑧  ⊆  𝐵  ∧  ∀ 𝑥  ∈  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ ) ∃ 𝑦  ∈  𝑧 𝜓 ) ) ) | 
						
							| 6 | 5 | exbidv | ⊢ ( 𝐴  =  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ )  →  ( ∃ 𝑧 ( 𝑧  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝑧 𝜓 )  ↔  ∃ 𝑧 ( 𝑧  ⊆  𝐵  ∧  ∀ 𝑥  ∈  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ ) ∃ 𝑦  ∈  𝑧 𝜓 ) ) ) | 
						
							| 7 | 3 6 | imbi12d | ⊢ ( 𝐴  =  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ )  →  ( ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜓  →  ∃ 𝑧 ( 𝑧  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝑧 𝜓 ) )  ↔  ( ∀ 𝑥  ∈  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ ) ∃ 𝑦  ∈  𝐵 𝜓  →  ∃ 𝑧 ( 𝑧  ⊆  𝐵  ∧  ∀ 𝑥  ∈  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ ) ∃ 𝑦  ∈  𝑧 𝜓 ) ) ) ) | 
						
							| 8 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 9 | 8 | elimel | ⊢ if ( 𝐴  ∈  V ,  𝐴 ,  ∅ )  ∈  V | 
						
							| 10 | 9 | bnd2 | ⊢ ( ∀ 𝑥  ∈  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ ) ∃ 𝑦  ∈  𝐵 𝜓  →  ∃ 𝑧 ( 𝑧  ⊆  𝐵  ∧  ∀ 𝑥  ∈  if ( 𝐴  ∈  V ,  𝐴 ,  ∅ ) ∃ 𝑦  ∈  𝑧 𝜓 ) ) | 
						
							| 11 | 7 10 | dedth | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜓  →  ∃ 𝑧 ( 𝑧  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝑧 𝜓 ) ) ) | 
						
							| 12 | 1 2 11 | sylc | ⊢ ( 𝜑  →  ∃ 𝑧 ( 𝑧  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝑧 𝜓 ) ) |