Step |
Hyp |
Ref |
Expression |
1 |
|
bnd2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
2 |
|
bnd2d.2 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) |
3 |
|
raleq |
⊢ ( 𝐴 = if ( 𝐴 ∈ V , 𝐴 , ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |
4 |
|
raleq |
⊢ ( 𝐴 = if ( 𝐴 ∈ V , 𝐴 , ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜓 ↔ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦 ∈ 𝑧 𝜓 ) ) |
5 |
4
|
anbi2d |
⊢ ( 𝐴 = if ( 𝐴 ∈ V , 𝐴 , ∅ ) → ( ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜓 ) ↔ ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦 ∈ 𝑧 𝜓 ) ) ) |
6 |
5
|
exbidv |
⊢ ( 𝐴 = if ( 𝐴 ∈ V , 𝐴 , ∅ ) → ( ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜓 ) ↔ ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦 ∈ 𝑧 𝜓 ) ) ) |
7 |
3 6
|
imbi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ V , 𝐴 , ∅ ) → ( ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦 ∈ 𝑧 𝜓 ) ) ) ) |
8 |
|
0ex |
⊢ ∅ ∈ V |
9 |
8
|
elimel |
⊢ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∈ V |
10 |
9
|
bnd2 |
⊢ ( ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦 ∈ 𝑧 𝜓 ) ) |
11 |
7 10
|
dedth |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜓 ) ) ) |
12 |
1 2 11
|
sylc |
⊢ ( 𝜑 → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜓 ) ) |