Metamath Proof Explorer


Theorem bnd2d

Description: Deduction form of bnd2 . (Contributed by Emmett Weisz, 19-Jan-2021)

Ref Expression
Hypotheses bnd2d.1 ( 𝜑𝐴 ∈ V )
bnd2d.2 ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝜓 )
Assertion bnd2d ( 𝜑 → ∃ 𝑧 ( 𝑧𝐵 ∧ ∀ 𝑥𝐴𝑦𝑧 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bnd2d.1 ( 𝜑𝐴 ∈ V )
2 bnd2d.2 ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝜓 )
3 raleq ( 𝐴 = if ( 𝐴 ∈ V , 𝐴 , ∅ ) → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 ↔ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦𝐵 𝜓 ) )
4 raleq ( 𝐴 = if ( 𝐴 ∈ V , 𝐴 , ∅ ) → ( ∀ 𝑥𝐴𝑦𝑧 𝜓 ↔ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦𝑧 𝜓 ) )
5 4 anbi2d ( 𝐴 = if ( 𝐴 ∈ V , 𝐴 , ∅ ) → ( ( 𝑧𝐵 ∧ ∀ 𝑥𝐴𝑦𝑧 𝜓 ) ↔ ( 𝑧𝐵 ∧ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦𝑧 𝜓 ) ) )
6 5 exbidv ( 𝐴 = if ( 𝐴 ∈ V , 𝐴 , ∅ ) → ( ∃ 𝑧 ( 𝑧𝐵 ∧ ∀ 𝑥𝐴𝑦𝑧 𝜓 ) ↔ ∃ 𝑧 ( 𝑧𝐵 ∧ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦𝑧 𝜓 ) ) )
7 3 6 imbi12d ( 𝐴 = if ( 𝐴 ∈ V , 𝐴 , ∅ ) → ( ( ∀ 𝑥𝐴𝑦𝐵 𝜓 → ∃ 𝑧 ( 𝑧𝐵 ∧ ∀ 𝑥𝐴𝑦𝑧 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦𝐵 𝜓 → ∃ 𝑧 ( 𝑧𝐵 ∧ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦𝑧 𝜓 ) ) ) )
8 0ex ∅ ∈ V
9 8 elimel if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∈ V
10 9 bnd2 ( ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦𝐵 𝜓 → ∃ 𝑧 ( 𝑧𝐵 ∧ ∀ 𝑥 ∈ if ( 𝐴 ∈ V , 𝐴 , ∅ ) ∃ 𝑦𝑧 𝜓 ) )
11 7 10 dedth ( 𝐴 ∈ V → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 → ∃ 𝑧 ( 𝑧𝐵 ∧ ∀ 𝑥𝐴𝑦𝑧 𝜓 ) ) )
12 1 2 11 sylc ( 𝜑 → ∃ 𝑧 ( 𝑧𝐵 ∧ ∀ 𝑥𝐴𝑦𝑧 𝜓 ) )