| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 |  |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
							| 2 | 1 | tfrlem3 |  |-  A = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) } | 
						
							| 3 | 2 | eqabri |  |-  ( g e. A <-> E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) ) | 
						
							| 4 |  | fnfun |  |-  ( g Fn z -> Fun g ) | 
						
							| 5 | 4 | adantr |  |-  ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> Fun g ) | 
						
							| 6 | 5 | rexlimivw |  |-  ( E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> Fun g ) | 
						
							| 7 | 3 6 | sylbi |  |-  ( g e. A -> Fun g ) |