| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 |  |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
							| 2 |  | vex |  |-  g e. _V | 
						
							| 3 | 1 2 | tfrlem3a |  |-  ( g e. A <-> E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) ) | 
						
							| 4 |  | vex |  |-  h e. _V | 
						
							| 5 | 1 4 | tfrlem3a |  |-  ( h e. A <-> E. w e. On ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) | 
						
							| 6 |  | reeanv |  |-  ( E. z e. On E. w e. On ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) <-> ( E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ E. w e. On ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) ) | 
						
							| 7 |  | fveq2 |  |-  ( a = x -> ( g ` a ) = ( g ` x ) ) | 
						
							| 8 |  | fveq2 |  |-  ( a = x -> ( h ` a ) = ( h ` x ) ) | 
						
							| 9 | 7 8 | eqeq12d |  |-  ( a = x -> ( ( g ` a ) = ( h ` a ) <-> ( g ` x ) = ( h ` x ) ) ) | 
						
							| 10 |  | onin |  |-  ( ( z e. On /\ w e. On ) -> ( z i^i w ) e. On ) | 
						
							| 11 | 10 | 3ad2ant1 |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( z i^i w ) e. On ) | 
						
							| 12 |  | simp2ll |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> g Fn z ) | 
						
							| 13 |  | fnfun |  |-  ( g Fn z -> Fun g ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> Fun g ) | 
						
							| 15 |  | inss1 |  |-  ( z i^i w ) C_ z | 
						
							| 16 | 12 | fndmd |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> dom g = z ) | 
						
							| 17 | 15 16 | sseqtrrid |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( z i^i w ) C_ dom g ) | 
						
							| 18 | 14 17 | jca |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( Fun g /\ ( z i^i w ) C_ dom g ) ) | 
						
							| 19 |  | simp2rl |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> h Fn w ) | 
						
							| 20 |  | fnfun |  |-  ( h Fn w -> Fun h ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> Fun h ) | 
						
							| 22 |  | inss2 |  |-  ( z i^i w ) C_ w | 
						
							| 23 | 19 | fndmd |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> dom h = w ) | 
						
							| 24 | 22 23 | sseqtrrid |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( z i^i w ) C_ dom h ) | 
						
							| 25 | 21 24 | jca |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( Fun h /\ ( z i^i w ) C_ dom h ) ) | 
						
							| 26 |  | simp2lr |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) | 
						
							| 27 |  | ssralv |  |-  ( ( z i^i w ) C_ z -> ( A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) -> A. a e. ( z i^i w ) ( g ` a ) = ( F ` ( g |` a ) ) ) ) | 
						
							| 28 | 15 26 27 | mpsyl |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. ( z i^i w ) ( g ` a ) = ( F ` ( g |` a ) ) ) | 
						
							| 29 |  | simp2rr |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) | 
						
							| 30 |  | ssralv |  |-  ( ( z i^i w ) C_ w -> ( A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) -> A. a e. ( z i^i w ) ( h ` a ) = ( F ` ( h |` a ) ) ) ) | 
						
							| 31 | 22 29 30 | mpsyl |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. ( z i^i w ) ( h ` a ) = ( F ` ( h |` a ) ) ) | 
						
							| 32 | 11 18 25 28 31 | tfrlem1 |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. ( z i^i w ) ( g ` a ) = ( h ` a ) ) | 
						
							| 33 |  | simp3l |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x g u ) | 
						
							| 34 |  | fnbr |  |-  ( ( g Fn z /\ x g u ) -> x e. z ) | 
						
							| 35 | 12 33 34 | syl2anc |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x e. z ) | 
						
							| 36 |  | simp3r |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x h v ) | 
						
							| 37 |  | fnbr |  |-  ( ( h Fn w /\ x h v ) -> x e. w ) | 
						
							| 38 | 19 36 37 | syl2anc |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x e. w ) | 
						
							| 39 | 35 38 | elind |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x e. ( z i^i w ) ) | 
						
							| 40 | 9 32 39 | rspcdva |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( g ` x ) = ( h ` x ) ) | 
						
							| 41 |  | funbrfv |  |-  ( Fun g -> ( x g u -> ( g ` x ) = u ) ) | 
						
							| 42 | 14 33 41 | sylc |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( g ` x ) = u ) | 
						
							| 43 |  | funbrfv |  |-  ( Fun h -> ( x h v -> ( h ` x ) = v ) ) | 
						
							| 44 | 21 36 43 | sylc |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( h ` x ) = v ) | 
						
							| 45 | 40 42 44 | 3eqtr3d |  |-  ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> u = v ) | 
						
							| 46 | 45 | 3exp |  |-  ( ( z e. On /\ w e. On ) -> ( ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) ) | 
						
							| 47 | 46 | rexlimivv |  |-  ( E. z e. On E. w e. On ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) | 
						
							| 48 | 6 47 | sylbir |  |-  ( ( E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ E. w e. On ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) | 
						
							| 49 | 3 5 48 | syl2anb |  |-  ( ( g e. A /\ h e. A ) -> ( ( x g u /\ x h v ) -> u = v ) ) |