Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnbr | |- ( ( F Fn A /\ B F C ) -> B e. A )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fnrel | |- ( F Fn A -> Rel F )  | 
						|
| 2 | releldm | |- ( ( Rel F /\ B F C ) -> B e. dom F )  | 
						|
| 3 | 1 2 | sylan | |- ( ( F Fn A /\ B F C ) -> B e. dom F )  | 
						
| 4 | fndm | |- ( F Fn A -> dom F = A )  | 
						|
| 5 | 4 | eleq2d | |- ( F Fn A -> ( B e. dom F <-> B e. A ) )  | 
						
| 6 | 5 | biimpa | |- ( ( F Fn A /\ B e. dom F ) -> B e. A )  | 
						
| 7 | 3 6 | syldan | |- ( ( F Fn A /\ B F C ) -> B e. A )  |