Metamath Proof Explorer


Theorem tfsconcatrnss

Description: The concatenation of transfinite sequences yields elements from a class iff both sequences yield elements from that class. (Contributed by RP, 2-Mar-2025)

Ref Expression
Hypothesis tfsconcat.op
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) )
Assertion tfsconcatrnss
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ran ( A .+ B ) C_ X <-> ( ran A C_ X /\ ran B C_ X ) ) )

Proof

Step Hyp Ref Expression
1 tfsconcat.op
 |-  .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) )
2 1 tfsconcatrn
 |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran ( A .+ B ) = ( ran A u. ran B ) )
3 2 sseq1d
 |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ran ( A .+ B ) C_ X <-> ( ran A u. ran B ) C_ X ) )
4 unss
 |-  ( ( ran A C_ X /\ ran B C_ X ) <-> ( ran A u. ran B ) C_ X )
5 3 4 bitr4di
 |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ran ( A .+ B ) C_ X <-> ( ran A C_ X /\ ran B C_ X ) ) )