| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfsconcat.op |
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
| 2 |
1
|
tfsconcatun |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) = ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
| 3 |
2
|
rneqd |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran ( A .+ B ) = ran ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
| 4 |
|
rnun |
|- ran ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = ( ran A u. ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) |
| 5 |
4
|
a1i |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = ( ran A u. ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
| 6 |
|
df-rex |
|- ( E. x e. ( ( C +o D ) \ C ) E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> E. x ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
| 7 |
|
pm3.22 |
|- ( ( C e. On /\ D e. On ) -> ( D e. On /\ C e. On ) ) |
| 8 |
7
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( D e. On /\ C e. On ) ) |
| 9 |
|
oaordi |
|- ( ( D e. On /\ C e. On ) -> ( d e. D -> ( C +o d ) e. ( C +o D ) ) ) |
| 10 |
8 9
|
syl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( d e. D -> ( C +o d ) e. ( C +o D ) ) ) |
| 11 |
10
|
imp |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> ( C +o d ) e. ( C +o D ) ) |
| 12 |
|
simplrl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> C e. On ) |
| 13 |
|
simprr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> D e. On ) |
| 14 |
|
onelon |
|- ( ( D e. On /\ d e. D ) -> d e. On ) |
| 15 |
13 14
|
sylan |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> d e. On ) |
| 16 |
|
oaword1 |
|- ( ( C e. On /\ d e. On ) -> C C_ ( C +o d ) ) |
| 17 |
12 15 16
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> C C_ ( C +o d ) ) |
| 18 |
|
oacl |
|- ( ( C e. On /\ D e. On ) -> ( C +o D ) e. On ) |
| 19 |
18
|
ad2antlr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> ( C +o D ) e. On ) |
| 20 |
|
eloni |
|- ( ( C +o D ) e. On -> Ord ( C +o D ) ) |
| 21 |
19 20
|
syl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> Ord ( C +o D ) ) |
| 22 |
|
eloni |
|- ( C e. On -> Ord C ) |
| 23 |
12 22
|
syl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> Ord C ) |
| 24 |
|
ordeldif |
|- ( ( Ord ( C +o D ) /\ Ord C ) -> ( ( C +o d ) e. ( ( C +o D ) \ C ) <-> ( ( C +o d ) e. ( C +o D ) /\ C C_ ( C +o d ) ) ) ) |
| 25 |
21 23 24
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> ( ( C +o d ) e. ( ( C +o D ) \ C ) <-> ( ( C +o d ) e. ( C +o D ) /\ C C_ ( C +o d ) ) ) ) |
| 26 |
11 17 25
|
mpbir2and |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> ( C +o d ) e. ( ( C +o D ) \ C ) ) |
| 27 |
|
simpr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( C e. On /\ D e. On ) ) |
| 28 |
27
|
adantr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( C e. On /\ D e. On ) ) |
| 29 |
18 20
|
syl |
|- ( ( C e. On /\ D e. On ) -> Ord ( C +o D ) ) |
| 30 |
22
|
adantr |
|- ( ( C e. On /\ D e. On ) -> Ord C ) |
| 31 |
29 30
|
jca |
|- ( ( C e. On /\ D e. On ) -> ( Ord ( C +o D ) /\ Ord C ) ) |
| 32 |
31
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( Ord ( C +o D ) /\ Ord C ) ) |
| 33 |
|
ordeldif |
|- ( ( Ord ( C +o D ) /\ Ord C ) -> ( x e. ( ( C +o D ) \ C ) <-> ( x e. ( C +o D ) /\ C C_ x ) ) ) |
| 34 |
32 33
|
syl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( x e. ( ( C +o D ) \ C ) <-> ( x e. ( C +o D ) /\ C C_ x ) ) ) |
| 35 |
34
|
biimpa |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( x e. ( C +o D ) /\ C C_ x ) ) |
| 36 |
35
|
ancomd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( C C_ x /\ x e. ( C +o D ) ) ) |
| 37 |
|
oawordex2 |
|- ( ( ( C e. On /\ D e. On ) /\ ( C C_ x /\ x e. ( C +o D ) ) ) -> E. d e. D ( C +o d ) = x ) |
| 38 |
28 36 37
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> E. d e. D ( C +o d ) = x ) |
| 39 |
|
eqcom |
|- ( ( C +o d ) = x <-> x = ( C +o d ) ) |
| 40 |
39
|
rexbii |
|- ( E. d e. D ( C +o d ) = x <-> E. d e. D x = ( C +o d ) ) |
| 41 |
38 40
|
sylib |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> E. d e. D x = ( C +o d ) ) |
| 42 |
|
simpr |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> x = ( C +o z ) ) |
| 43 |
|
simpll3 |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> x = ( C +o d ) ) |
| 44 |
42 43
|
eqtr3d |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> ( C +o z ) = ( C +o d ) ) |
| 45 |
|
simp1rl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> C e. On ) |
| 46 |
45
|
adantr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> C e. On ) |
| 47 |
|
simp1rr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> D e. On ) |
| 48 |
|
onelon |
|- ( ( D e. On /\ z e. D ) -> z e. On ) |
| 49 |
47 48
|
sylan |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> z e. On ) |
| 50 |
|
simp2 |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> d e. D ) |
| 51 |
47 50 14
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> d e. On ) |
| 52 |
51
|
adantr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> d e. On ) |
| 53 |
46 49 52
|
3jca |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> ( C e. On /\ z e. On /\ d e. On ) ) |
| 54 |
53
|
adantr |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> ( C e. On /\ z e. On /\ d e. On ) ) |
| 55 |
|
oacan |
|- ( ( C e. On /\ z e. On /\ d e. On ) -> ( ( C +o z ) = ( C +o d ) <-> z = d ) ) |
| 56 |
54 55
|
syl |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> ( ( C +o z ) = ( C +o d ) <-> z = d ) ) |
| 57 |
44 56
|
mpbid |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> z = d ) |
| 58 |
|
velsn |
|- ( z e. { d } <-> z = d ) |
| 59 |
57 58
|
sylibr |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> z e. { d } ) |
| 60 |
59
|
ex |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> ( x = ( C +o z ) -> z e. { d } ) ) |
| 61 |
60
|
adantrd |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> ( ( x = ( C +o z ) /\ y = ( B ` z ) ) -> z e. { d } ) ) |
| 62 |
61
|
expimpd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( ( z e. D /\ ( x = ( C +o z ) /\ y = ( B ` z ) ) ) -> z e. { d } ) ) |
| 63 |
|
simprr |
|- ( ( z e. D /\ ( x = ( C +o z ) /\ y = ( B ` z ) ) ) -> y = ( B ` z ) ) |
| 64 |
62 63
|
jca2 |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( ( z e. D /\ ( x = ( C +o z ) /\ y = ( B ` z ) ) ) -> ( z e. { d } /\ y = ( B ` z ) ) ) ) |
| 65 |
64
|
reximdv2 |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) -> E. z e. { d } y = ( B ` z ) ) ) |
| 66 |
|
vex |
|- d e. _V |
| 67 |
|
fveq2 |
|- ( z = d -> ( B ` z ) = ( B ` d ) ) |
| 68 |
67
|
eqeq2d |
|- ( z = d -> ( y = ( B ` z ) <-> y = ( B ` d ) ) ) |
| 69 |
66 68
|
rexsn |
|- ( E. z e. { d } y = ( B ` z ) <-> y = ( B ` d ) ) |
| 70 |
65 69
|
imbitrdi |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) -> y = ( B ` d ) ) ) |
| 71 |
50
|
adantr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ y = ( B ` d ) ) -> d e. D ) |
| 72 |
|
simpl3 |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ y = ( B ` d ) ) -> x = ( C +o d ) ) |
| 73 |
|
simpr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ y = ( B ` d ) ) -> y = ( B ` d ) ) |
| 74 |
|
oveq2 |
|- ( z = d -> ( C +o z ) = ( C +o d ) ) |
| 75 |
74
|
eqeq2d |
|- ( z = d -> ( x = ( C +o z ) <-> x = ( C +o d ) ) ) |
| 76 |
75 68
|
anbi12d |
|- ( z = d -> ( ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> ( x = ( C +o d ) /\ y = ( B ` d ) ) ) ) |
| 77 |
76
|
rspcev |
|- ( ( d e. D /\ ( x = ( C +o d ) /\ y = ( B ` d ) ) ) -> E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
| 78 |
71 72 73 77
|
syl12anc |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ y = ( B ` d ) ) -> E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
| 79 |
78
|
ex |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( y = ( B ` d ) -> E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
| 80 |
70 79
|
impbid |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> y = ( B ` d ) ) ) |
| 81 |
26 41 80
|
rexxfrd2 |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( E. x e. ( ( C +o D ) \ C ) E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> E. d e. D y = ( B ` d ) ) ) |
| 82 |
6 81
|
bitr3id |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( E. x ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) <-> E. d e. D y = ( B ` d ) ) ) |
| 83 |
82
|
abbidv |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> { y | E. x ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = { y | E. d e. D y = ( B ` d ) } ) |
| 84 |
|
rnopab |
|- ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = { y | E. x ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } |
| 85 |
84
|
a1i |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = { y | E. x ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) |
| 86 |
|
fnrnfv |
|- ( B Fn D -> ran B = { y | E. d e. D y = ( B ` d ) } ) |
| 87 |
86
|
ad2antlr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran B = { y | E. d e. D y = ( B ` d ) } ) |
| 88 |
83 85 87
|
3eqtr4d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = ran B ) |
| 89 |
88
|
uneq2d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ran A u. ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = ( ran A u. ran B ) ) |
| 90 |
3 5 89
|
3eqtrd |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran ( A .+ B ) = ( ran A u. ran B ) ) |