Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
2 |
1
|
tfsconcatun |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) = ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
3 |
2
|
rneqd |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran ( A .+ B ) = ran ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
4 |
|
rnun |
|- ran ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = ( ran A u. ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) |
5 |
4
|
a1i |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = ( ran A u. ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
6 |
|
df-rex |
|- ( E. x e. ( ( C +o D ) \ C ) E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> E. x ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
7 |
|
pm3.22 |
|- ( ( C e. On /\ D e. On ) -> ( D e. On /\ C e. On ) ) |
8 |
7
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( D e. On /\ C e. On ) ) |
9 |
|
oaordi |
|- ( ( D e. On /\ C e. On ) -> ( d e. D -> ( C +o d ) e. ( C +o D ) ) ) |
10 |
8 9
|
syl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( d e. D -> ( C +o d ) e. ( C +o D ) ) ) |
11 |
10
|
imp |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> ( C +o d ) e. ( C +o D ) ) |
12 |
|
simplrl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> C e. On ) |
13 |
|
simprr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> D e. On ) |
14 |
|
onelon |
|- ( ( D e. On /\ d e. D ) -> d e. On ) |
15 |
13 14
|
sylan |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> d e. On ) |
16 |
|
oaword1 |
|- ( ( C e. On /\ d e. On ) -> C C_ ( C +o d ) ) |
17 |
12 15 16
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> C C_ ( C +o d ) ) |
18 |
|
oacl |
|- ( ( C e. On /\ D e. On ) -> ( C +o D ) e. On ) |
19 |
18
|
ad2antlr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> ( C +o D ) e. On ) |
20 |
|
eloni |
|- ( ( C +o D ) e. On -> Ord ( C +o D ) ) |
21 |
19 20
|
syl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> Ord ( C +o D ) ) |
22 |
|
eloni |
|- ( C e. On -> Ord C ) |
23 |
12 22
|
syl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> Ord C ) |
24 |
|
ordeldif |
|- ( ( Ord ( C +o D ) /\ Ord C ) -> ( ( C +o d ) e. ( ( C +o D ) \ C ) <-> ( ( C +o d ) e. ( C +o D ) /\ C C_ ( C +o d ) ) ) ) |
25 |
21 23 24
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> ( ( C +o d ) e. ( ( C +o D ) \ C ) <-> ( ( C +o d ) e. ( C +o D ) /\ C C_ ( C +o d ) ) ) ) |
26 |
11 17 25
|
mpbir2and |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> ( C +o d ) e. ( ( C +o D ) \ C ) ) |
27 |
|
simpr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( C e. On /\ D e. On ) ) |
28 |
27
|
adantr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( C e. On /\ D e. On ) ) |
29 |
18 20
|
syl |
|- ( ( C e. On /\ D e. On ) -> Ord ( C +o D ) ) |
30 |
22
|
adantr |
|- ( ( C e. On /\ D e. On ) -> Ord C ) |
31 |
29 30
|
jca |
|- ( ( C e. On /\ D e. On ) -> ( Ord ( C +o D ) /\ Ord C ) ) |
32 |
31
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( Ord ( C +o D ) /\ Ord C ) ) |
33 |
|
ordeldif |
|- ( ( Ord ( C +o D ) /\ Ord C ) -> ( x e. ( ( C +o D ) \ C ) <-> ( x e. ( C +o D ) /\ C C_ x ) ) ) |
34 |
32 33
|
syl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( x e. ( ( C +o D ) \ C ) <-> ( x e. ( C +o D ) /\ C C_ x ) ) ) |
35 |
34
|
biimpa |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( x e. ( C +o D ) /\ C C_ x ) ) |
36 |
35
|
ancomd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( C C_ x /\ x e. ( C +o D ) ) ) |
37 |
|
oawordex2 |
|- ( ( ( C e. On /\ D e. On ) /\ ( C C_ x /\ x e. ( C +o D ) ) ) -> E. d e. D ( C +o d ) = x ) |
38 |
28 36 37
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> E. d e. D ( C +o d ) = x ) |
39 |
|
eqcom |
|- ( ( C +o d ) = x <-> x = ( C +o d ) ) |
40 |
39
|
rexbii |
|- ( E. d e. D ( C +o d ) = x <-> E. d e. D x = ( C +o d ) ) |
41 |
38 40
|
sylib |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> E. d e. D x = ( C +o d ) ) |
42 |
|
simpr |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> x = ( C +o z ) ) |
43 |
|
simpll3 |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> x = ( C +o d ) ) |
44 |
42 43
|
eqtr3d |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> ( C +o z ) = ( C +o d ) ) |
45 |
|
simp1rl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> C e. On ) |
46 |
45
|
adantr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> C e. On ) |
47 |
|
simp1rr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> D e. On ) |
48 |
|
onelon |
|- ( ( D e. On /\ z e. D ) -> z e. On ) |
49 |
47 48
|
sylan |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> z e. On ) |
50 |
|
simp2 |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> d e. D ) |
51 |
47 50 14
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> d e. On ) |
52 |
51
|
adantr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> d e. On ) |
53 |
46 49 52
|
3jca |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> ( C e. On /\ z e. On /\ d e. On ) ) |
54 |
53
|
adantr |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> ( C e. On /\ z e. On /\ d e. On ) ) |
55 |
|
oacan |
|- ( ( C e. On /\ z e. On /\ d e. On ) -> ( ( C +o z ) = ( C +o d ) <-> z = d ) ) |
56 |
54 55
|
syl |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> ( ( C +o z ) = ( C +o d ) <-> z = d ) ) |
57 |
44 56
|
mpbid |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> z = d ) |
58 |
|
velsn |
|- ( z e. { d } <-> z = d ) |
59 |
57 58
|
sylibr |
|- ( ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> z e. { d } ) |
60 |
59
|
ex |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> ( x = ( C +o z ) -> z e. { d } ) ) |
61 |
60
|
adantrd |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ z e. D ) -> ( ( x = ( C +o z ) /\ y = ( B ` z ) ) -> z e. { d } ) ) |
62 |
61
|
expimpd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( ( z e. D /\ ( x = ( C +o z ) /\ y = ( B ` z ) ) ) -> z e. { d } ) ) |
63 |
|
simprr |
|- ( ( z e. D /\ ( x = ( C +o z ) /\ y = ( B ` z ) ) ) -> y = ( B ` z ) ) |
64 |
62 63
|
jca2 |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( ( z e. D /\ ( x = ( C +o z ) /\ y = ( B ` z ) ) ) -> ( z e. { d } /\ y = ( B ` z ) ) ) ) |
65 |
64
|
reximdv2 |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) -> E. z e. { d } y = ( B ` z ) ) ) |
66 |
|
vex |
|- d e. _V |
67 |
|
fveq2 |
|- ( z = d -> ( B ` z ) = ( B ` d ) ) |
68 |
67
|
eqeq2d |
|- ( z = d -> ( y = ( B ` z ) <-> y = ( B ` d ) ) ) |
69 |
66 68
|
rexsn |
|- ( E. z e. { d } y = ( B ` z ) <-> y = ( B ` d ) ) |
70 |
65 69
|
imbitrdi |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) -> y = ( B ` d ) ) ) |
71 |
50
|
adantr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ y = ( B ` d ) ) -> d e. D ) |
72 |
|
simpl3 |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ y = ( B ` d ) ) -> x = ( C +o d ) ) |
73 |
|
simpr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ y = ( B ` d ) ) -> y = ( B ` d ) ) |
74 |
|
oveq2 |
|- ( z = d -> ( C +o z ) = ( C +o d ) ) |
75 |
74
|
eqeq2d |
|- ( z = d -> ( x = ( C +o z ) <-> x = ( C +o d ) ) ) |
76 |
75 68
|
anbi12d |
|- ( z = d -> ( ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> ( x = ( C +o d ) /\ y = ( B ` d ) ) ) ) |
77 |
76
|
rspcev |
|- ( ( d e. D /\ ( x = ( C +o d ) /\ y = ( B ` d ) ) ) -> E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
78 |
71 72 73 77
|
syl12anc |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) /\ y = ( B ` d ) ) -> E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
79 |
78
|
ex |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( y = ( B ` d ) -> E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
80 |
70 79
|
impbid |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D /\ x = ( C +o d ) ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> y = ( B ` d ) ) ) |
81 |
26 41 80
|
rexxfrd2 |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( E. x e. ( ( C +o D ) \ C ) E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> E. d e. D y = ( B ` d ) ) ) |
82 |
6 81
|
bitr3id |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( E. x ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) <-> E. d e. D y = ( B ` d ) ) ) |
83 |
82
|
abbidv |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> { y | E. x ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = { y | E. d e. D y = ( B ` d ) } ) |
84 |
|
rnopab |
|- ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = { y | E. x ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } |
85 |
84
|
a1i |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = { y | E. x ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) |
86 |
|
fnrnfv |
|- ( B Fn D -> ran B = { y | E. d e. D y = ( B ` d ) } ) |
87 |
86
|
ad2antlr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran B = { y | E. d e. D y = ( B ` d ) } ) |
88 |
83 85 87
|
3eqtr4d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = ran B ) |
89 |
88
|
uneq2d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ran A u. ran { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = ( ran A u. ran B ) ) |
90 |
3 5 89
|
3eqtrd |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran ( A .+ B ) = ( ran A u. ran B ) ) |