Metamath Proof Explorer


Theorem ordeldif

Description: Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion ordeldif
|- ( ( Ord A /\ Ord B ) -> ( C e. ( A \ B ) <-> ( C e. A /\ B C_ C ) ) )

Proof

Step Hyp Ref Expression
1 eldif
 |-  ( C e. ( A \ B ) <-> ( C e. A /\ -. C e. B ) )
2 simpr
 |-  ( ( Ord A /\ Ord B ) -> Ord B )
3 ordelord
 |-  ( ( Ord A /\ C e. A ) -> Ord C )
4 3 adantlr
 |-  ( ( ( Ord A /\ Ord B ) /\ C e. A ) -> Ord C )
5 ordtri1
 |-  ( ( Ord B /\ Ord C ) -> ( B C_ C <-> -. C e. B ) )
6 2 4 5 syl2an2r
 |-  ( ( ( Ord A /\ Ord B ) /\ C e. A ) -> ( B C_ C <-> -. C e. B ) )
7 6 bicomd
 |-  ( ( ( Ord A /\ Ord B ) /\ C e. A ) -> ( -. C e. B <-> B C_ C ) )
8 7 pm5.32da
 |-  ( ( Ord A /\ Ord B ) -> ( ( C e. A /\ -. C e. B ) <-> ( C e. A /\ B C_ C ) ) )
9 1 8 bitrid
 |-  ( ( Ord A /\ Ord B ) -> ( C e. ( A \ B ) <-> ( C e. A /\ B C_ C ) ) )