| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldif |
|- ( C e. ( A \ B ) <-> ( C e. A /\ -. C e. B ) ) |
| 2 |
|
simpr |
|- ( ( Ord A /\ Ord B ) -> Ord B ) |
| 3 |
|
ordelord |
|- ( ( Ord A /\ C e. A ) -> Ord C ) |
| 4 |
3
|
adantlr |
|- ( ( ( Ord A /\ Ord B ) /\ C e. A ) -> Ord C ) |
| 5 |
|
ordtri1 |
|- ( ( Ord B /\ Ord C ) -> ( B C_ C <-> -. C e. B ) ) |
| 6 |
2 4 5
|
syl2an2r |
|- ( ( ( Ord A /\ Ord B ) /\ C e. A ) -> ( B C_ C <-> -. C e. B ) ) |
| 7 |
6
|
bicomd |
|- ( ( ( Ord A /\ Ord B ) /\ C e. A ) -> ( -. C e. B <-> B C_ C ) ) |
| 8 |
7
|
pm5.32da |
|- ( ( Ord A /\ Ord B ) -> ( ( C e. A /\ -. C e. B ) <-> ( C e. A /\ B C_ C ) ) ) |
| 9 |
1 8
|
bitrid |
|- ( ( Ord A /\ Ord B ) -> ( C e. ( A \ B ) <-> ( C e. A /\ B C_ C ) ) ) |