Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Set Theory and Ordinal Numbers
ordeldif
Next ⟩
ordeldifsucon
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordeldif
Description:
Membership in the difference of ordinals.
(Contributed by
RP
, 15-Jan-2025)
Ref
Expression
Assertion
ordeldif
⊢
Ord
⁡
A
∧
Ord
⁡
B
→
C
∈
A
∖
B
↔
C
∈
A
∧
B
⊆
C
Proof
Step
Hyp
Ref
Expression
1
eldif
⊢
C
∈
A
∖
B
↔
C
∈
A
∧
¬
C
∈
B
2
simpr
⊢
Ord
⁡
A
∧
Ord
⁡
B
→
Ord
⁡
B
3
ordelord
⊢
Ord
⁡
A
∧
C
∈
A
→
Ord
⁡
C
4
3
adantlr
⊢
Ord
⁡
A
∧
Ord
⁡
B
∧
C
∈
A
→
Ord
⁡
C
5
ordtri1
⊢
Ord
⁡
B
∧
Ord
⁡
C
→
B
⊆
C
↔
¬
C
∈
B
6
2
4
5
syl2an2r
⊢
Ord
⁡
A
∧
Ord
⁡
B
∧
C
∈
A
→
B
⊆
C
↔
¬
C
∈
B
7
6
bicomd
⊢
Ord
⁡
A
∧
Ord
⁡
B
∧
C
∈
A
→
¬
C
∈
B
↔
B
⊆
C
8
7
pm5.32da
⊢
Ord
⁡
A
∧
Ord
⁡
B
→
C
∈
A
∧
¬
C
∈
B
↔
C
∈
A
∧
B
⊆
C
9
1
8
bitrid
⊢
Ord
⁡
A
∧
Ord
⁡
B
→
C
∈
A
∖
B
↔
C
∈
A
∧
B
⊆
C