Description: Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ordeldif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | |
|
2 | simpr | |
|
3 | ordelord | |
|
4 | 3 | adantlr | |
5 | ordtri1 | |
|
6 | 2 4 5 | syl2an2r | |
7 | 6 | bicomd | |
8 | 7 | pm5.32da | |
9 | 1 8 | bitrid | |