Metamath Proof Explorer


Theorem ordeldif

Description: Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion ordeldif Ord A Ord B C A B C A B C

Proof

Step Hyp Ref Expression
1 eldif C A B C A ¬ C B
2 simpr Ord A Ord B Ord B
3 ordelord Ord A C A Ord C
4 3 adantlr Ord A Ord B C A Ord C
5 ordtri1 Ord B Ord C B C ¬ C B
6 2 4 5 syl2an2r Ord A Ord B C A B C ¬ C B
7 6 bicomd Ord A Ord B C A ¬ C B B C
8 7 pm5.32da Ord A Ord B C A ¬ C B C A B C
9 1 8 bitrid Ord A Ord B C A B C A B C