Metamath Proof Explorer


Theorem ordeldif

Description: Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion ordeldif OrdAOrdBCABCABC

Proof

Step Hyp Ref Expression
1 eldif CABCA¬CB
2 simpr OrdAOrdBOrdB
3 ordelord OrdACAOrdC
4 3 adantlr OrdAOrdBCAOrdC
5 ordtri1 OrdBOrdCBC¬CB
6 2 4 5 syl2an2r OrdAOrdBCABC¬CB
7 6 bicomd OrdAOrdBCA¬CBBC
8 7 pm5.32da OrdAOrdBCA¬CBCABC
9 1 8 bitrid OrdAOrdBCABCABC