Metamath Proof Explorer


Theorem ordeldifsucon

Description: Membership in the difference of ordinal and successor ordinal. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion ordeldifsucon OrdABOnCAsucBCABC

Proof

Step Hyp Ref Expression
1 eldif CAsucBCA¬CsucB
2 simplr OrdABOnCABOn
3 ordelord OrdACAOrdC
4 3 adantlr OrdABOnCAOrdC
5 ordelsuc BOnOrdCBCsucBC
6 2 4 5 syl2anc OrdABOnCABCsucBC
7 eloni BOnOrdB
8 ordsuci OrdBOrdsucB
9 2 7 8 3syl OrdABOnCAOrdsucB
10 ordtri1 OrdsucBOrdCsucBC¬CsucB
11 9 4 10 syl2anc OrdABOnCAsucBC¬CsucB
12 6 11 bitr2d OrdABOnCA¬CsucBBC
13 12 pm5.32da OrdABOnCA¬CsucBCABC
14 1 13 bitrid OrdABOnCAsucBCABC