Metamath Proof Explorer


Theorem ordeldifsucon

Description: Membership in the difference of ordinal and successor ordinal. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion ordeldifsucon Ord A B On C A suc B C A B C

Proof

Step Hyp Ref Expression
1 eldif C A suc B C A ¬ C suc B
2 simplr Ord A B On C A B On
3 ordelord Ord A C A Ord C
4 3 adantlr Ord A B On C A Ord C
5 ordelsuc B On Ord C B C suc B C
6 2 4 5 syl2anc Ord A B On C A B C suc B C
7 eloni B On Ord B
8 ordsuci Ord B Ord suc B
9 2 7 8 3syl Ord A B On C A Ord suc B
10 ordtri1 Ord suc B Ord C suc B C ¬ C suc B
11 9 4 10 syl2anc Ord A B On C A suc B C ¬ C suc B
12 6 11 bitr2d Ord A B On C A ¬ C suc B B C
13 12 pm5.32da Ord A B On C A ¬ C suc B C A B C
14 1 13 bitrid Ord A B On C A suc B C A B C