Metamath Proof Explorer


Theorem ordeldif1o

Description: Membership in the difference of ordinal and ordinal one. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion ordeldif1o Ord A B A 1 𝑜 B A B

Proof

Step Hyp Ref Expression
1 df-1o 1 𝑜 = suc
2 1 difeq2i A 1 𝑜 = A suc
3 2 eleq2i B A 1 𝑜 B A suc
4 eldif B A suc B A ¬ B suc
5 3 4 bitri B A 1 𝑜 B A ¬ B suc
6 0elon On
7 ordelord Ord A B A Ord B
8 ordelsuc On Ord B B suc B
9 6 7 8 sylancr Ord A B A B suc B
10 ord0eln0 Ord B B B
11 7 10 syl Ord A B A B B
12 eloni On Ord
13 ordsuci Ord Ord suc
14 6 12 13 mp2b Ord suc
15 ordtri1 Ord suc Ord B suc B ¬ B suc
16 14 7 15 sylancr Ord A B A suc B ¬ B suc
17 9 11 16 3bitr3rd Ord A B A ¬ B suc B
18 17 pm5.32da Ord A B A ¬ B suc B A B
19 5 18 bitrid Ord A B A 1 𝑜 B A B