Metamath Proof Explorer


Theorem ordeldif1o

Description: Membership in the difference of ordinal and ordinal one. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion ordeldif1o OrdABA1𝑜BAB

Proof

Step Hyp Ref Expression
1 df-1o 1𝑜=suc
2 1 difeq2i A1𝑜=Asuc
3 2 eleq2i BA1𝑜BAsuc
4 eldif BAsucBA¬Bsuc
5 3 4 bitri BA1𝑜BA¬Bsuc
6 0elon On
7 ordelord OrdABAOrdB
8 ordelsuc OnOrdBBsucB
9 6 7 8 sylancr OrdABABsucB
10 ord0eln0 OrdBBB
11 7 10 syl OrdABABB
12 eloni OnOrd
13 ordsuci OrdOrdsuc
14 6 12 13 mp2b Ordsuc
15 ordtri1 OrdsucOrdBsucB¬Bsuc
16 14 7 15 sylancr OrdABAsucB¬Bsuc
17 9 11 16 3bitr3rd OrdABA¬BsucB
18 17 pm5.32da OrdABA¬BsucBAB
19 5 18 bitrid OrdABA1𝑜BAB