| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-1o |
|- 1o = suc (/) |
| 2 |
1
|
difeq2i |
|- ( A \ 1o ) = ( A \ suc (/) ) |
| 3 |
2
|
eleq2i |
|- ( B e. ( A \ 1o ) <-> B e. ( A \ suc (/) ) ) |
| 4 |
|
eldif |
|- ( B e. ( A \ suc (/) ) <-> ( B e. A /\ -. B e. suc (/) ) ) |
| 5 |
3 4
|
bitri |
|- ( B e. ( A \ 1o ) <-> ( B e. A /\ -. B e. suc (/) ) ) |
| 6 |
|
0elon |
|- (/) e. On |
| 7 |
|
ordelord |
|- ( ( Ord A /\ B e. A ) -> Ord B ) |
| 8 |
|
ordelsuc |
|- ( ( (/) e. On /\ Ord B ) -> ( (/) e. B <-> suc (/) C_ B ) ) |
| 9 |
6 7 8
|
sylancr |
|- ( ( Ord A /\ B e. A ) -> ( (/) e. B <-> suc (/) C_ B ) ) |
| 10 |
|
ord0eln0 |
|- ( Ord B -> ( (/) e. B <-> B =/= (/) ) ) |
| 11 |
7 10
|
syl |
|- ( ( Ord A /\ B e. A ) -> ( (/) e. B <-> B =/= (/) ) ) |
| 12 |
|
eloni |
|- ( (/) e. On -> Ord (/) ) |
| 13 |
|
ordsuci |
|- ( Ord (/) -> Ord suc (/) ) |
| 14 |
6 12 13
|
mp2b |
|- Ord suc (/) |
| 15 |
|
ordtri1 |
|- ( ( Ord suc (/) /\ Ord B ) -> ( suc (/) C_ B <-> -. B e. suc (/) ) ) |
| 16 |
14 7 15
|
sylancr |
|- ( ( Ord A /\ B e. A ) -> ( suc (/) C_ B <-> -. B e. suc (/) ) ) |
| 17 |
9 11 16
|
3bitr3rd |
|- ( ( Ord A /\ B e. A ) -> ( -. B e. suc (/) <-> B =/= (/) ) ) |
| 18 |
17
|
pm5.32da |
|- ( Ord A -> ( ( B e. A /\ -. B e. suc (/) ) <-> ( B e. A /\ B =/= (/) ) ) ) |
| 19 |
5 18
|
bitrid |
|- ( Ord A -> ( B e. ( A \ 1o ) <-> ( B e. A /\ B =/= (/) ) ) ) |