Step |
Hyp |
Ref |
Expression |
1 |
|
df-1o |
⊢ 1o = suc ∅ |
2 |
1
|
difeq2i |
⊢ ( 𝐴 ∖ 1o ) = ( 𝐴 ∖ suc ∅ ) |
3 |
2
|
eleq2i |
⊢ ( 𝐵 ∈ ( 𝐴 ∖ 1o ) ↔ 𝐵 ∈ ( 𝐴 ∖ suc ∅ ) ) |
4 |
|
eldif |
⊢ ( 𝐵 ∈ ( 𝐴 ∖ suc ∅ ) ↔ ( 𝐵 ∈ 𝐴 ∧ ¬ 𝐵 ∈ suc ∅ ) ) |
5 |
3 4
|
bitri |
⊢ ( 𝐵 ∈ ( 𝐴 ∖ 1o ) ↔ ( 𝐵 ∈ 𝐴 ∧ ¬ 𝐵 ∈ suc ∅ ) ) |
6 |
|
0elon |
⊢ ∅ ∈ On |
7 |
|
ordelord |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) |
8 |
|
ordelsuc |
⊢ ( ( ∅ ∈ On ∧ Ord 𝐵 ) → ( ∅ ∈ 𝐵 ↔ suc ∅ ⊆ 𝐵 ) ) |
9 |
6 7 8
|
sylancr |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ∅ ∈ 𝐵 ↔ suc ∅ ⊆ 𝐵 ) ) |
10 |
|
ord0eln0 |
⊢ ( Ord 𝐵 → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
11 |
7 10
|
syl |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
12 |
|
eloni |
⊢ ( ∅ ∈ On → Ord ∅ ) |
13 |
|
ordsuci |
⊢ ( Ord ∅ → Ord suc ∅ ) |
14 |
6 12 13
|
mp2b |
⊢ Ord suc ∅ |
15 |
|
ordtri1 |
⊢ ( ( Ord suc ∅ ∧ Ord 𝐵 ) → ( suc ∅ ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc ∅ ) ) |
16 |
14 7 15
|
sylancr |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( suc ∅ ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc ∅ ) ) |
17 |
9 11 16
|
3bitr3rd |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ¬ 𝐵 ∈ suc ∅ ↔ 𝐵 ≠ ∅ ) ) |
18 |
17
|
pm5.32da |
⊢ ( Ord 𝐴 → ( ( 𝐵 ∈ 𝐴 ∧ ¬ 𝐵 ∈ suc ∅ ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) ) ) |
19 |
5 18
|
bitrid |
⊢ ( Ord 𝐴 → ( 𝐵 ∈ ( 𝐴 ∖ 1o ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) ) ) |