Description: Ordinal zero is less than every non-zero ordinal. Theorem 1.10 of Schloeder p. 2. Closely related to ord0eln0 . (Contributed by RP, 16-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordne0gt0 | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0eln0 | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 2 | 1 | biimpar | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |