Metamath Proof Explorer


Theorem ordne0gt0

Description: Ordinal zero is less than every non-zero ordinal. Theorem 1.10 of Schloeder p. 2. Closely related to ord0eln0 . (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion ordne0gt0 ( ( Ord 𝐴𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 ord0eln0 ( Ord 𝐴 → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
2 1 biimpar ( ( Ord 𝐴𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 )