Metamath Proof Explorer


Theorem ondif1i

Description: Ordinal zero is less than every non-zero ordinal, class difference version. Theorem 1.10 of Schloeder p. 2. See ondif1 . (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion ondif1i ( 𝐴 ∈ ( On ∖ 1o ) → ∅ ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 ondif1 ( 𝐴 ∈ ( On ∖ 1o ) ↔ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) )
2 1 simprbi ( 𝐴 ∈ ( On ∖ 1o ) → ∅ ∈ 𝐴 )