Description: Ordinal zero is less than every non-zero ordinal, class difference version. Theorem 1.10 of Schloeder p. 2. See ondif1 . (Contributed by RP, 16-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ondif1i | ⊢ ( 𝐴 ∈ ( On ∖ 1o ) → ∅ ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ondif1 | ⊢ ( 𝐴 ∈ ( On ∖ 1o ) ↔ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) | |
2 | 1 | simprbi | ⊢ ( 𝐴 ∈ ( On ∖ 1o ) → ∅ ∈ 𝐴 ) |