Description: Ordinal zero is less than every non-zero ordinal, class difference version. Theorem 1.10 of Schloeder p. 2. See ondif1 . (Contributed by RP, 16-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ondif1i | ⊢ ( 𝐴 ∈ ( On ∖ 1o ) → ∅ ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ondif1 | ⊢ ( 𝐴 ∈ ( On ∖ 1o ) ↔ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝐴 ∈ ( On ∖ 1o ) → ∅ ∈ 𝐴 ) |