Step |
Hyp |
Ref |
Expression |
1 |
|
onsuc |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) |
2 |
|
eqid |
⊢ suc 𝐴 = suc 𝐴 |
3 |
|
id |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ On ) |
4 |
|
suceq |
⊢ ( 𝑏 = 𝐴 → suc 𝑏 = suc 𝐴 ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑏 = 𝐴 → ( suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 = 𝐴 ) → ( suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴 ) ) |
7 |
3 6
|
rspcedv |
⊢ ( 𝐴 ∈ On → ( suc 𝐴 = suc 𝐴 → ∃ 𝑏 ∈ On suc 𝐴 = suc 𝑏 ) ) |
8 |
2 7
|
mpi |
⊢ ( 𝐴 ∈ On → ∃ 𝑏 ∈ On suc 𝐴 = suc 𝑏 ) |
9 |
|
eqeq1 |
⊢ ( 𝑎 = suc 𝐴 → ( 𝑎 = suc 𝑏 ↔ suc 𝐴 = suc 𝑏 ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑎 = suc 𝐴 → ( ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃ 𝑏 ∈ On suc 𝐴 = suc 𝑏 ) ) |
11 |
10
|
elrab |
⊢ ( suc 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } ↔ ( suc 𝐴 ∈ On ∧ ∃ 𝑏 ∈ On suc 𝐴 = suc 𝑏 ) ) |
12 |
1 8 11
|
sylanbrc |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } ) |