Metamath Proof Explorer


Theorem onsucelab

Description: The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion onsucelab ( 𝐴 ∈ On → suc 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } )

Proof

Step Hyp Ref Expression
1 onsuc ( 𝐴 ∈ On → suc 𝐴 ∈ On )
2 eqid suc 𝐴 = suc 𝐴
3 id ( 𝐴 ∈ On → 𝐴 ∈ On )
4 suceq ( 𝑏 = 𝐴 → suc 𝑏 = suc 𝐴 )
5 4 eqeq2d ( 𝑏 = 𝐴 → ( suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴 ) )
6 5 adantl ( ( 𝐴 ∈ On ∧ 𝑏 = 𝐴 ) → ( suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴 ) )
7 3 6 rspcedv ( 𝐴 ∈ On → ( suc 𝐴 = suc 𝐴 → ∃ 𝑏 ∈ On suc 𝐴 = suc 𝑏 ) )
8 2 7 mpi ( 𝐴 ∈ On → ∃ 𝑏 ∈ On suc 𝐴 = suc 𝑏 )
9 eqeq1 ( 𝑎 = suc 𝐴 → ( 𝑎 = suc 𝑏 ↔ suc 𝐴 = suc 𝑏 ) )
10 9 rexbidv ( 𝑎 = suc 𝐴 → ( ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃ 𝑏 ∈ On suc 𝐴 = suc 𝑏 ) )
11 10 elrab ( suc 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } ↔ ( suc 𝐴 ∈ On ∧ ∃ 𝑏 ∈ On suc 𝐴 = suc 𝑏 ) )
12 1 8 11 sylanbrc ( 𝐴 ∈ On → suc 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } )