Metamath Proof Explorer


Theorem dflim6

Description: A limit ordinal is a non-zero ordinal which is not a successor ordinal. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion dflim6 ( Lim 𝐴 ↔ ( Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) )

Proof

Step Hyp Ref Expression
1 ioran ( ¬ ( 𝐴 = ∅ ∨ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) )
2 df-ne ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ )
3 2 anbi1i ( ( 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) )
4 1 3 bitr4i ( ¬ ( 𝐴 = ∅ ∨ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ↔ ( 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) )
5 4 anbi2i ( ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) ↔ ( Ord 𝐴 ∧ ( 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) )
6 dflim3 ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) )
7 3anass ( ( Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ↔ ( Ord 𝐴 ∧ ( 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) )
8 5 6 7 3bitr4i ( Lim 𝐴 ↔ ( Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) )