Step |
Hyp |
Ref |
Expression |
1 |
|
ioran |
⊢ ( ¬ ( 𝐴 = ∅ ∨ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) |
2 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
3 |
2
|
anbi1i |
⊢ ( ( 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) |
4 |
1 3
|
bitr4i |
⊢ ( ¬ ( 𝐴 = ∅ ∨ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ↔ ( 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) |
5 |
4
|
anbi2i |
⊢ ( ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) ↔ ( Ord 𝐴 ∧ ( 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) ) |
6 |
|
dflim3 |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) ) |
7 |
|
3anass |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ↔ ( Ord 𝐴 ∧ ( 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) ) |
8 |
5 6 7
|
3bitr4i |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) |