Step |
Hyp |
Ref |
Expression |
1 |
|
dflim6 |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) |
2 |
|
simp3 |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) → ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) |
3 |
|
eqeq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 = suc 𝑏 ↔ 𝐴 = suc 𝑏 ) ) |
4 |
3
|
rexbidv |
⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) |
5 |
4
|
elrab |
⊢ ( 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } ↔ ( 𝐴 ∈ On ∧ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) |
6 |
5
|
simprbi |
⊢ ( 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } → ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) |
7 |
2 6
|
nsyl |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) → ¬ 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } ) |
8 |
1 7
|
sylbi |
⊢ ( Lim 𝐴 → ¬ 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } ) |