Metamath Proof Explorer


Theorem limnsuc

Description: A limit ordinal is not an element of the class of successor ordinals. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion limnsuc ( Lim 𝐴 → ¬ 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } )

Proof

Step Hyp Ref Expression
1 dflim6 ( Lim 𝐴 ↔ ( Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) )
2 simp3 ( ( Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) → ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 )
3 eqeq1 ( 𝑎 = 𝐴 → ( 𝑎 = suc 𝑏𝐴 = suc 𝑏 ) )
4 3 rexbidv ( 𝑎 = 𝐴 → ( ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) )
5 4 elrab ( 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } ↔ ( 𝐴 ∈ On ∧ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) )
6 5 simprbi ( 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } → ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 )
7 2 6 nsyl ( ( Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃ 𝑏 ∈ On 𝐴 = suc 𝑏 ) → ¬ 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } )
8 1 7 sylbi ( Lim 𝐴 → ¬ 𝐴 ∈ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } )