Metamath Proof Explorer


Theorem limnsuc

Description: A limit ordinal is not an element of the class of successor ordinals. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion limnsuc
|- ( Lim A -> -. A e. { a e. On | E. b e. On a = suc b } )

Proof

Step Hyp Ref Expression
1 dflim6
 |-  ( Lim A <-> ( Ord A /\ A =/= (/) /\ -. E. b e. On A = suc b ) )
2 simp3
 |-  ( ( Ord A /\ A =/= (/) /\ -. E. b e. On A = suc b ) -> -. E. b e. On A = suc b )
3 eqeq1
 |-  ( a = A -> ( a = suc b <-> A = suc b ) )
4 3 rexbidv
 |-  ( a = A -> ( E. b e. On a = suc b <-> E. b e. On A = suc b ) )
5 4 elrab
 |-  ( A e. { a e. On | E. b e. On a = suc b } <-> ( A e. On /\ E. b e. On A = suc b ) )
6 5 simprbi
 |-  ( A e. { a e. On | E. b e. On a = suc b } -> E. b e. On A = suc b )
7 2 6 nsyl
 |-  ( ( Ord A /\ A =/= (/) /\ -. E. b e. On A = suc b ) -> -. A e. { a e. On | E. b e. On a = suc b } )
8 1 7 sylbi
 |-  ( Lim A -> -. A e. { a e. On | E. b e. On a = suc b } )