Metamath Proof Explorer


Theorem limnsuc

Description: A limit ordinal is not an element of the class of successor ordinals. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion limnsuc Lim A ¬ A a On | b On a = suc b

Proof

Step Hyp Ref Expression
1 dflim6 Lim A Ord A A ¬ b On A = suc b
2 simp3 Ord A A ¬ b On A = suc b ¬ b On A = suc b
3 eqeq1 a = A a = suc b A = suc b
4 3 rexbidv a = A b On a = suc b b On A = suc b
5 4 elrab A a On | b On a = suc b A On b On A = suc b
6 5 simprbi A a On | b On a = suc b b On A = suc b
7 2 6 nsyl Ord A A ¬ b On A = suc b ¬ A a On | b On a = suc b
8 1 7 sylbi Lim A ¬ A a On | b On a = suc b