Metamath Proof Explorer


Theorem dflim6

Description: A limit ordinal is a non-zero ordinal which is not a successor ordinal. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion dflim6 Lim A Ord A A ¬ b On A = suc b

Proof

Step Hyp Ref Expression
1 ioran ¬ A = b On A = suc b ¬ A = ¬ b On A = suc b
2 df-ne A ¬ A =
3 2 anbi1i A ¬ b On A = suc b ¬ A = ¬ b On A = suc b
4 1 3 bitr4i ¬ A = b On A = suc b A ¬ b On A = suc b
5 4 anbi2i Ord A ¬ A = b On A = suc b Ord A A ¬ b On A = suc b
6 dflim3 Lim A Ord A ¬ A = b On A = suc b
7 3anass Ord A A ¬ b On A = suc b Ord A A ¬ b On A = suc b
8 5 6 7 3bitr4i Lim A Ord A A ¬ b On A = suc b