Metamath Proof Explorer


Theorem onsucelab

Description: The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion onsucelab A On suc A a On | b On a = suc b

Proof

Step Hyp Ref Expression
1 onsuc A On suc A On
2 eqid suc A = suc A
3 id A On A On
4 suceq b = A suc b = suc A
5 4 eqeq2d b = A suc A = suc b suc A = suc A
6 5 adantl A On b = A suc A = suc b suc A = suc A
7 3 6 rspcedv A On suc A = suc A b On suc A = suc b
8 2 7 mpi A On b On suc A = suc b
9 eqeq1 a = suc A a = suc b suc A = suc b
10 9 rexbidv a = suc A b On a = suc b b On suc A = suc b
11 10 elrab suc A a On | b On a = suc b suc A On b On suc A = suc b
12 1 8 11 sylanbrc A On suc A a On | b On a = suc b