Metamath Proof Explorer


Theorem onsucelab

Description: The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion onsucelab
|- ( A e. On -> suc A e. { a e. On | E. b e. On a = suc b } )

Proof

Step Hyp Ref Expression
1 onsuc
 |-  ( A e. On -> suc A e. On )
2 eqid
 |-  suc A = suc A
3 id
 |-  ( A e. On -> A e. On )
4 suceq
 |-  ( b = A -> suc b = suc A )
5 4 eqeq2d
 |-  ( b = A -> ( suc A = suc b <-> suc A = suc A ) )
6 5 adantl
 |-  ( ( A e. On /\ b = A ) -> ( suc A = suc b <-> suc A = suc A ) )
7 3 6 rspcedv
 |-  ( A e. On -> ( suc A = suc A -> E. b e. On suc A = suc b ) )
8 2 7 mpi
 |-  ( A e. On -> E. b e. On suc A = suc b )
9 eqeq1
 |-  ( a = suc A -> ( a = suc b <-> suc A = suc b ) )
10 9 rexbidv
 |-  ( a = suc A -> ( E. b e. On a = suc b <-> E. b e. On suc A = suc b ) )
11 10 elrab
 |-  ( suc A e. { a e. On | E. b e. On a = suc b } <-> ( suc A e. On /\ E. b e. On suc A = suc b ) )
12 1 8 11 sylanbrc
 |-  ( A e. On -> suc A e. { a e. On | E. b e. On a = suc b } )