Metamath Proof Explorer


Theorem ondif1i

Description: Ordinal zero is less than every non-zero ordinal, class difference version. Theorem 1.10 of Schloeder p. 2. See ondif1 . (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion ondif1i
|- ( A e. ( On \ 1o ) -> (/) e. A )

Proof

Step Hyp Ref Expression
1 ondif1
 |-  ( A e. ( On \ 1o ) <-> ( A e. On /\ (/) e. A ) )
2 1 simprbi
 |-  ( A e. ( On \ 1o ) -> (/) e. A )