Metamath Proof Explorer


Theorem ordne0gt0

Description: Ordinal zero is less than every non-zero ordinal. Theorem 1.10 of Schloeder p. 2. Closely related to ord0eln0 . (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion ordne0gt0
|- ( ( Ord A /\ A =/= (/) ) -> (/) e. A )

Proof

Step Hyp Ref Expression
1 ord0eln0
 |-  ( Ord A -> ( (/) e. A <-> A =/= (/) ) )
2 1 biimpar
 |-  ( ( Ord A /\ A =/= (/) ) -> (/) e. A )