| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ne0i |  |-  ( (/) e. A -> A =/= (/) ) | 
						
							| 2 |  | ord0 |  |-  Ord (/) | 
						
							| 3 |  | noel |  |-  -. A e. (/) | 
						
							| 4 |  | ordtri2 |  |-  ( ( Ord A /\ Ord (/) ) -> ( A e. (/) <-> -. ( A = (/) \/ (/) e. A ) ) ) | 
						
							| 5 | 4 | con2bid |  |-  ( ( Ord A /\ Ord (/) ) -> ( ( A = (/) \/ (/) e. A ) <-> -. A e. (/) ) ) | 
						
							| 6 | 3 5 | mpbiri |  |-  ( ( Ord A /\ Ord (/) ) -> ( A = (/) \/ (/) e. A ) ) | 
						
							| 7 | 2 6 | mpan2 |  |-  ( Ord A -> ( A = (/) \/ (/) e. A ) ) | 
						
							| 8 |  | neor |  |-  ( ( A = (/) \/ (/) e. A ) <-> ( A =/= (/) -> (/) e. A ) ) | 
						
							| 9 | 7 8 | sylib |  |-  ( Ord A -> ( A =/= (/) -> (/) e. A ) ) | 
						
							| 10 | 1 9 | impbid2 |  |-  ( Ord A -> ( (/) e. A <-> A =/= (/) ) ) |