Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝐶 ∈ ( 𝐴 ∖ suc 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵 ) ) |
2 |
|
simplr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ On ) |
3 |
|
ordelord |
⊢ ( ( Ord 𝐴 ∧ 𝐶 ∈ 𝐴 ) → Ord 𝐶 ) |
4 |
3
|
adantlr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐴 ) → Ord 𝐶 ) |
5 |
|
ordelsuc |
⊢ ( ( 𝐵 ∈ On ∧ Ord 𝐶 ) → ( 𝐵 ∈ 𝐶 ↔ suc 𝐵 ⊆ 𝐶 ) ) |
6 |
2 4 5
|
syl2anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ∈ 𝐶 ↔ suc 𝐵 ⊆ 𝐶 ) ) |
7 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
8 |
|
ordsuci |
⊢ ( Ord 𝐵 → Ord suc 𝐵 ) |
9 |
2 7 8
|
3syl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐴 ) → Ord suc 𝐵 ) |
10 |
|
ordtri1 |
⊢ ( ( Ord suc 𝐵 ∧ Ord 𝐶 ) → ( suc 𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵 ) ) |
11 |
9 4 10
|
syl2anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐴 ) → ( suc 𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵 ) ) |
12 |
6 11
|
bitr2d |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐴 ) → ( ¬ 𝐶 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝐶 ) ) |
13 |
12
|
pm5.32da |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ( 𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) ) ) |
14 |
1 13
|
bitrid |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ ( 𝐴 ∖ suc 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) ) ) |