Metamath Proof Explorer


Theorem ordeldifsucon

Description: Membership in the difference of ordinal and successor ordinal. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion ordeldifsucon ( ( Ord 𝐴𝐵 ∈ On ) → ( 𝐶 ∈ ( 𝐴 ∖ suc 𝐵 ) ↔ ( 𝐶𝐴𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 eldif ( 𝐶 ∈ ( 𝐴 ∖ suc 𝐵 ) ↔ ( 𝐶𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵 ) )
2 simplr ( ( ( Ord 𝐴𝐵 ∈ On ) ∧ 𝐶𝐴 ) → 𝐵 ∈ On )
3 ordelord ( ( Ord 𝐴𝐶𝐴 ) → Ord 𝐶 )
4 3 adantlr ( ( ( Ord 𝐴𝐵 ∈ On ) ∧ 𝐶𝐴 ) → Ord 𝐶 )
5 ordelsuc ( ( 𝐵 ∈ On ∧ Ord 𝐶 ) → ( 𝐵𝐶 ↔ suc 𝐵𝐶 ) )
6 2 4 5 syl2anc ( ( ( Ord 𝐴𝐵 ∈ On ) ∧ 𝐶𝐴 ) → ( 𝐵𝐶 ↔ suc 𝐵𝐶 ) )
7 eloni ( 𝐵 ∈ On → Ord 𝐵 )
8 ordsuci ( Ord 𝐵 → Ord suc 𝐵 )
9 2 7 8 3syl ( ( ( Ord 𝐴𝐵 ∈ On ) ∧ 𝐶𝐴 ) → Ord suc 𝐵 )
10 ordtri1 ( ( Ord suc 𝐵 ∧ Ord 𝐶 ) → ( suc 𝐵𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵 ) )
11 9 4 10 syl2anc ( ( ( Ord 𝐴𝐵 ∈ On ) ∧ 𝐶𝐴 ) → ( suc 𝐵𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵 ) )
12 6 11 bitr2d ( ( ( Ord 𝐴𝐵 ∈ On ) ∧ 𝐶𝐴 ) → ( ¬ 𝐶 ∈ suc 𝐵𝐵𝐶 ) )
13 12 pm5.32da ( ( Ord 𝐴𝐵 ∈ On ) → ( ( 𝐶𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵 ) ↔ ( 𝐶𝐴𝐵𝐶 ) ) )
14 1 13 bitrid ( ( Ord 𝐴𝐵 ∈ On ) → ( 𝐶 ∈ ( 𝐴 ∖ suc 𝐵 ) ↔ ( 𝐶𝐴𝐵𝐶 ) ) )